
This article is cited in 1 scientific paper (total in 1 paper)
RESEARCH ARTICLE
Perturbations of discrete lattices and almost periodic sets
Favorov Sergey^{}, Kolbasina Yevgeniia^{} ^{} Mathematical School, Kharkov National University, Swobody sq.4, Kharkov, 61077, Ukraine
Abstract:
A discrete set in the $p$dimensional Euclidian space is almost periodic, if the measure with the unite masses at points of the set is almost periodic in the weak sense. We propose to construct positive almost periodic discrete sets as an almost periodic perturbation of a full rank discrete lattice. Also we prove that each almost periodic discrete set on the real axes is an almost periodic perturbation of some arithmetic progression.
Next, we consider signed almost periodic discrete sets, i.e., when the signed measure with masses $+1$ or $1$ at points of a discrete set is almost periodic. We construct a signed discrete set that is not almost periodic, while the corresponding signed measure is almost periodic in the sense of distributions. Also, we construct a signed almost periodic discrete set such that the measure with masses $+1$ at all points of the set is not almost periodic.
Keywords:
perturbation of discrete lattice, almost periodic discrete set, signed discrete set, quasicrystals.
Full text:
PDF file (218 kB)
Bibliographic databases:
MSC: 11K70, 52C07, 52C23 Received: 12.02.2010 Revised: 10.11.2010
Language:
Citation:
Favorov Sergey, Kolbasina Yevgeniia, “Perturbations of discrete lattices and almost periodic sets”, Algebra Discrete Math., 9:2 (2010), 50–60
Citation in format AMSBIB
\Bibitem{FavKol10}
\by Favorov Sergey, Kolbasina Yevgeniia
\paper Perturbations of discrete lattices and almost periodic sets
\jour Algebra Discrete Math.
\yr 2010
\vol 9
\issue 2
\pages 5060
\mathnet{http://mi.mathnet.ru/adm28}
\mathscinet{http://www.ams.org/mathscinetgetitem?mr=2808780}
\zmath{https://zbmath.org/?q=an:1222.42011}
Linking options:
http://mi.mathnet.ru/eng/adm28 http://mi.mathnet.ru/eng/adm/v9/i2/p50
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:

Favorov S., “Bohr and Besicovitch Almost Periodic Discrete Sets and Quasicrystals”, Proc. Amer. Math. Soc., 140:5 (2012), 1761–1767

Number of views: 
This page:  243  Full text:  59  First page:  1 
