|
RESEARCH ARTICLE
Associated prime ideals of weak $\sigma$-rigid rings and their extensions
V. K. Bhat School of Mathematics, SMVD University,
P/o SMVD University, Katra, J and K, India-182320
Аннотация:
Let $R$ be a right Noetherian ring which is also an algebra over $\mathbb{Q}$ ($\mathbb{Q}$ the field of rational numbers). Let $\sigma$ be an automorphism of R and $\delta$ a $\sigma$-derivation of $R$. Let further $\sigma$ be such that $a\sigma(a)\in N(R)$ implies that $a\in N(R)$ for $a\in R$, where $N(R)$ is the set of nilpotent elements of $R$. In this paper we study the associated prime ideals of Ore extension $R[x;\sigma,\delta]$ and we prove the following in this direction:
Let $R$ be a semiprime right Noetherian ring which is also an algebra over $\mathbb{Q}$. Let $\sigma$ and $\delta$ be as above. Then $P$ is an associated prime ideal of $R[x;\sigma,\delta]$ (viewed as a right module over itself) if and only if there exists ban associated prime ideal $U$ of $R$ with $\sigma(U)=U$ and
$\delta(U)\subseteq U$ and $P=U[x;\sigma,\delta]$.
We also prove that if $R$ be a right Noetherian ring which is also an algebra over $\mathbb{Q}$, $\sigma$ and $\delta$ as usual such that $\sigma(\delta(a))=\delta(\sigma(a))$ for all $a\in R$ and $\sigma(U)=U$ for all associated prime ideals $U$ of $R$ (viewed as a right module over itself), then $P$ is an associated prime
ideal of $R[x;\sigma,\delta]$ (viewed as a right module over itself) if and only if there exists an associated prime ideal $U$ of $R$ such that $(P\cap R)[x;\sigma,\delta]=P$ and $P\cap R=U$.
Ключевые слова:
Ore extension, automorphism, derivation, associated prime.
Полный текст:
PDF файл (221 kB)
Реферативные базы данных:
Тип публикации:
Статья
MSC: 16-XX, 16N40, 16P40, 16S36 Поступила в редакцию: 16.10.2009 Исправленный вариант: 16.10.2009
Язык публикации: английский
Образец цитирования:
V. K. Bhat, “Associated prime ideals of weak $\sigma$-rigid rings and their extensions”, Algebra Discrete Math., 10:1 (2010), 8–17
Цитирование в формате AMSBIB
\RBibitem{Bha10}
\by V.~K.~Bhat
\paper Associated prime ideals of weak $\sigma$-rigid rings and their extensions
\jour Algebra Discrete Math.
\yr 2010
\vol 10
\issue 1
\pages 8--17
\mathnet{http://mi.mathnet.ru/adm36}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2807684}
\zmath{https://zbmath.org/?q=an:1212.16049}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/adm36 http://mi.mathnet.ru/rus/adm/v10/i1/p8
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Просмотров: |
Эта страница: | 112 | Полный текст: | 82 | Первая стр.: | 1 |
|