RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Discrete Math., 2003, Issue 3, Pages 1–6 (Mi adm381)  

RESEARCH ARTICLE

$N$ – real fields

Shalom Feigelstock

Department of Mathematics, Bar–Ilan University, Ramat Gan, Israel

Abstract: A field $F$ is $n$-real if $-1$ is not the sum of $n$ squares in $F$. It is shown that a field $F$ is $m$-real if and only if $rank (AA^t)=rank (A)$ for every $n\times m$ matrix $A$ with entries from $F$. An $n$-real field $F$ is $n$-real closed if every proper algebraic extension of $F$ is not $n$-real. It is shown that if a $3$-real field $F$ is $2$-real closed, then $F$ is a real closed field. For $F$ a quadratic extension of the field of rational numbers, the greatest integer $n$ such that $F$ is $n$-real is determined.

Keywords: $n$-real, $n$-real closed.

Full text: PDF file (180 kB)

Bibliographic databases:
MSC: 12D15
Received: 03.03.2003
Revised: 23.10.2003
Language:

Citation: Shalom Feigelstock, “$N$ – real fields”, Algebra Discrete Math., 2003, no. 3, 1–6

Citation in format AMSBIB
\Bibitem{Fei03}
\by Shalom~Feigelstock
\paper $N$~-- real fields
\jour Algebra Discrete Math.
\yr 2003
\issue 3
\pages 1--6
\mathnet{http://mi.mathnet.ru/adm381}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2048637}
\zmath{https://zbmath.org/?q=an:1122.12001}


Linking options:
  • http://mi.mathnet.ru/eng/adm381
  • http://mi.mathnet.ru/eng/adm/y2003/i3/p1

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Algebra and Discrete Mathematics
    Number of views:
    This page:81
    Full text:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020