RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Discrete Math., 2013, Volume 16, Issue 2, Pages 242–286 (Mi adm451)  

This article is cited in 9 scientific papers (total in 9 papers)

RESEARCH ARTICLE

Algorithms computing $O(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C#

A. Polak, D. Simson

Faculty of Mathematics and Computer Sciences, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

Abstract: We present combinatorial algorithms constructing loop-free $P$-critical edge-bipartite (signed) graphs $\Delta'$, with $n\geq 3$ vertices, from pairs $(\Delta , w)$, with $\Delta $ a positive edge-bipartite graph having $n-1$ vertices and $w$ a sincere root of $\Delta $, up to an action $*:\mathcal{U} \mathcal{B} igr_n \times O(n,\mathbb{Z}) \to \mathcal{U}\mathcal{B} igr_n$ of the orthogonal group $O(n,\mathbb{Z})$ on the set $\mathcal{U} \mathcal{B} igr_n$ of loop-free edge-bipartite graphs, with $n\geq 3$ vertices. Here $\mathbb{Z}$ is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in $\mathcal{U} \mathcal{B} igr_n$ and for computing the $O(n, \mathbb{Z})$-orbits of $P$-critical graphs $\Delta$ in $\mathcal{U} \mathcal{B} igr_n$ as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute $P$-critical graphs in $\mathcal{U} \mathcal{B} igr_n$ and connected positive graphs in $\mathcal{U} \mathcal{B} igr_n$, together with their Coxeter polynomials, reduced Coxeter numbers, and the $ O(n, \mathbb{Z})$-orbits, for $n\leq 10$. The computational results are presented in tables of Section 5.

Keywords: edge-bipartite graph, unit quadratic form, $P$-critical edge-bipartite graph, Gram matrix, sincere root, orthogonal group, algorithm, Coxeter polynomial, Euclidean diagram.

Full text: PDF file (470 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 15A63, 11Y16, 68W30, 05E10 16G20, 20B40, 15A21
Received: 26.07.2013
Revised: 26.07.2013
Language:

Citation: A. Polak, D. Simson, “Algorithms computing $O(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C#”, Algebra Discrete Math., 16:2 (2013), 242–286

Citation in format AMSBIB
\Bibitem{PolSim13}
\by A.~Polak, D.~Simson
\paper Algorithms computing ${\rm O}(n, \mathbb{Z})$-orbits of $P$-critical edge-bipartite graphs and $P$-critical unit forms using Maple and C\#
\jour Algebra Discrete Math.
\yr 2013
\vol 16
\issue 2
\pages 242--286
\mathnet{http://mi.mathnet.ru/adm451}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3186088}


Linking options:
  • http://mi.mathnet.ru/eng/adm451
  • http://mi.mathnet.ru/eng/adm/v16/i2/p242

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Marcin Gąsiorek, Daniel Simson, Katarzyna Zając, “Algorithmic computation of principal posets using Maple and Python”, Algebra Discrete Math., 17:1 (2014), 33–69  mathnet  mathscinet
    2. Polak A. Simson D., “Coxeter Spectral Classification of Almost Tp-Critical One-Peak Posets Using Symbolic and Numeric Computations”, Linear Alg. Appl., 445 (2014), 223–255  crossref  mathscinet  zmath  isi  elib  scopus
    3. Polak A., Simson D., “Algorithmic Experiences in Coxeter Spectral Study of P-Critical Edge-Bipartite Graphs and Posets”, 2013 15Th International Symposium on Symbolic and Numeric Algorithms For Scientific Computing (Synasc 2013), eds. Bjorner N., Negru V., Ida T., Jebelean T., Petcu D., Watt S., Zaharie D., IEEE, 2014, 375–382  crossref  mathscinet  isi  scopus
    4. Gasiorek M., “Efficient Computation of the Isotropy Group of a Finite Graph: a Combinatorial Approach”, 2013 15Th International Symposium on Symbolic and Numeric Algorithms For Scientific Computing (Synasc 2013), International Symposium on Symbolic and Numeric Algorithms For Scientific Computing, ed. Bjorner N. Negru V. Ida T. Jebelean T. Petcu D. Watt S. Zaharie D., IEEE, 2014, 104–111  crossref  isi  scopus
    5. Gasiorek M. Simson D. Zajac K., “Structure and a Coxeter-Dynkin Type Classification of Corank Two Non-Negative Posets”, Linear Alg. Appl., 469 (2015), 76–113  crossref  mathscinet  zmath  isi  elib  scopus
    6. Gasiorek M., Zajac K., “on Algorithmic Study of Non-Negative Posets of Corank At Most Two and Their Coxeter-Dynkin Types”, Fundam. Inform., 139:4 (2015), 347–367  crossref  mathscinet  zmath  isi  scopus
    7. M. Gasiorek, D. Simson, K. Zajac, “A Gram classification of non-negative corank-two loop-free edge-bipartite graphs”, Linear Alg. Appl., 500 (2016), 88–118  crossref  mathscinet  zmath  isi  elib  scopus
    8. D. Simson, “Symbolic algorithms computing Gram congruences in the Coxeter spectral classification of edge-bipartite graphs, I. A Gram classification”, Fundam. Inform., 145:1 (2016), 19–48  crossref  mathscinet  zmath  isi  scopus
    9. D. Simson, “Symbolic algorithms computing Gram congruences in the Coxeter spectral classification of edge-bipartite graphs, II. Isotropy mini-groups”, Fundam. Inform., 145:1 (2016), 49–80  crossref  mathscinet  zmath  isi  scopus
  • Algebra and Discrete Mathematics
    Number of views:
    This page:172
    Full text:99
    References:34

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020