  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Algebra Discrete Math.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Algebra Discrete Math., 2014, Volume 17, Issue 2, Pages 193–221 (Mi adm466)  SURVEY ARTICLE

Densities, submeasures and partitions of groups

Taras Banakhab, Igor Protasovc, Sergiy Slobodianiukc

a Ivan Franko National University of Lviv, Ukraine
b Jan Kochanowski University in Kielce, Poland
c Taras Shevchenko National University, Kyiv, Ukraine

Abstract: In 1995 in Kourovka notebook the second author asked the following problem: is it true that for each partition $G=A_1\cup…\cup A_n$ of a group $G$ there is a cell $A_i$ of the partition such that $G=FA_iA_i^{-1}$ for some set $F\subset G$ of cardinality $|F|\le n$? In this paper we survey several partial solutions of this problem, in particular those involving certain canonical invariant densities and submeasures on groups. In particular, we show that for any partition $G=A_1\cup…\cup A_n$ of a group $G$ there are cells $A_i$, $A_j$ of the partition such that
• $G=FA_jA_j^{-1}$ for some finite set $F\subset G$ of cardinality $|F|\le \max_{0<k\le n}\sum_{p=0}^{n-k}k^p\le n!$;
• $G=F\cdot\bigcup_{x\in E}xA_iA_i^{-1}x^{-1}$ for some finite sets $F,E\subset G$ with $|F|\le n$;
• $G=FA_iA_i^{-1}A_i$ for some finite set $F\subset G$ of cardinality $|F|\le n$;
• the set $(A_iA_i^{-1})^{4^{n-1}}$ is a subgroup of index $\le n$ in $G$.
The last three statements are derived from the corresponding density results.

Keywords: partition of a group; density; submeasure; amenable group. Full text: PDF file (296 kB) References: PDF file   HTML file

Bibliographic databases: MSC: 05E15, 05D10, 28C10
Revised: 22.04.2014
Language:

Citation: Taras Banakh, Igor Protasov, Sergiy Slobodianiuk, “Densities, submeasures and partitions of groups”, Algebra Discrete Math., 17:2 (2014), 193–221 Citation in format AMSBIB
\Bibitem{BanProSlo14} \by Taras~Banakh, Igor~Protasov, Sergiy~Slobodianiuk \paper Densities, submeasures and partitions of groups \jour Algebra Discrete Math. \yr 2014 \vol 17 \issue 2 \pages 193--221 \mathnet{http://mi.mathnet.ru/adm466} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=3287929} 

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. Protasov I., Slobodianiuk S., “Partitions of Groups Into Large Subsets”, J. Group Theory, 18:2 (2015), 291–298      2. O. V. Petrenko, I. V. Protasov, “Ultrafilters on $G$-spaces”, Algebra Discrete Math., 19:2 (2015), 254–269  3. T. Banakh, O. Ravsky, S. Slobodianiuk, “On partitions of $G$-spaces and $G$-lattices”, Int. J. Algebr. Comput., 26:2 (2016), 283–308      •  Contact us: math-net2020_03 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020