RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Discrete Math., 2014, Volume 17, Issue 2, Pages 256–279 (Mi adm470)  

This article is cited in 1 scientific paper (total in 1 paper)

RESEARCH ARTICLE

On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images

Oleg Gutik, Inna Pozdnyakova

Faculty of Mechanics and Mathematics, Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine

Abstract: We study the semigroup $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ of monotone injective partial selfmaps of the set of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ having co-finite domain and image, where $L_n\times_{\operatorname{lex}}\mathbb{Z}$ is the lexicographic product of $n$-elements chain and the set of integers with the usual order. We show that $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is bisimple and establish its projective congruences. We prove that $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is finitely generated, and for $n=1$ every automorphism of $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ is inner and show that in the case $n\geqslant 2$ the semigroup $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ has non-inner automorphisms. Also we show that every Baire topology $\tau$ on $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ such that $(\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\operatorname{lex}}),\tau)$ is a Hausdorff semitopological semigroup is discrete, construct a non-discrete Hausdorff semigroup inverse topology on $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$, and prove that the discrete semigroup $\mathscr{IO}_{\infty}(\mathbb{Z}^n_{\operatorname{lex}})$ cannot be embedded into some classes of compact-like topological semigroups and that its remainder under the closure in a topological semigroup $S$ is an ideal in $S$.

Keywords: topological semigroup, semitopological semigroup, semigroup of bijective partial transformations, symmetric inverse semigroup, congruence, ideal, automorphism, homomorphism, Baire space, semigroup topologization, embedding.

Full text: PDF file (255 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: Primary 20M18, 20M20; Secondary 20M05, 20M15, 22A15, 54C25, 54D40, 54E52, 54H10
Received: 07.12.2013
Revised: 27.01.2014
Language:

Citation: Oleg Gutik, Inna Pozdnyakova, “On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images”, Algebra Discrete Math., 17:2 (2014), 256–279

Citation in format AMSBIB
\Bibitem{GutPoz14}
\by Oleg~Gutik, Inna~Pozdnyakova
\paper On monoids of monotone injective partial selfmaps of $L_n\times_{\operatorname{lex}}\mathbb{Z}$ with co-finite domains and images
\jour Algebra Discrete Math.
\yr 2014
\vol 17
\issue 2
\pages 256--279
\mathnet{http://mi.mathnet.ru/adm470}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3287933}


Linking options:
  • http://mi.mathnet.ru/eng/adm470
  • http://mi.mathnet.ru/eng/adm/v17/i2/p256

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Serhii Bardyla, Oleg Gutik, “On a semitopological polycyclic monoid”, Algebra Discrete Math., 21:2 (2016), 163–183  mathnet  mathscinet
  • Algebra and Discrete Mathematics
    Number of views:
    This page:136
    Full text:49
    References:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020