RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Discrete Math., 2015, Volume 20, Issue 1, Pages 13–31 (Mi adm528)  

This article is cited in 2 scientific papers (total in 2 papers)

RESEARCH ARTICLE

Lie and Jordan structures of differentially semiprime rings

Orest D. Artemovycha, Maria P. Lukashenkob

a Institute of Mathematics, Tadeusz Kościuszko Cracow University of Technology
b Faculty of Mathematics and Informatics, Vasyl Stefanyk Precarpathian National University

Abstract: Properties of Lie and Jordan rings (denoted respectively by $R^L$ and $R^J$) associated with an associative ring $R$ are discussed. Results on connections between the differentially simplicity (respectively primeness, semiprimeness) of $R$, $R^L$ and $R^J$ are obtained.

Keywords: derivation, semiprime ring, Lie ring.

Full text: PDF file (344 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: Primary 16W25, 16N60; Secondary 17B60, 17C50
Received: 22.01.2015
Revised: 22.03.2015
Language:

Citation: Orest D. Artemovych, Maria P. Lukashenko, “Lie and Jordan structures of differentially semiprime rings”, Algebra Discrete Math., 20:1 (2015), 13–31

Citation in format AMSBIB
\Bibitem{ArtLuk15}
\by Orest~D.~Artemovych, Maria~P.~Lukashenko
\paper Lie and Jordan structures of differentially semiprime rings
\jour Algebra Discrete Math.
\yr 2015
\vol 20
\issue 1
\pages 13--31
\mathnet{http://mi.mathnet.ru/adm528}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3431948}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000378728700003}


Linking options:
  • http://mi.mathnet.ru/eng/adm528
  • http://mi.mathnet.ru/eng/adm/v20/i1/p13

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. Kular, “A commutativity criterion for delta-prime rings”, Miskolc Math. Notes, 18:2 (2017), 925–931  crossref  mathscinet  isi
    2. A. Al Khalaf, O. D. Artemovych, I. Taha, “Derivations in differentially prime rings”, J. Algebra. Appl., 17:7 (2018), 1850129  crossref  mathscinet  zmath  isi  scopus
  • Algebra and Discrete Mathematics
    Number of views:
    This page:112
    Full text:46
    References:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020