RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Discrete Math., 2015, Volume 20, Issue 1, Pages 55–68 (Mi adm531)  

RESEARCH ARTICLE

Quivers of $3\times 3$-exponent matrices

M. Dokuchaeva, V. Kirichenkob, M. Plakhotnykb

a Departamento de Matematica, Universidade de São Paulo
b Department of Mechanics and Mathematics, National Taras Shevchenko University of Kyiv

Abstract: We show how to use generating exponent matrices to study the quivers of exponent matrices. We also describe the admissible quivers of $3\times 3$ exponent matrices.

Keywords: quiver, tiled order, exponent matrix.

Full text: PDF file (332 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 16H99, 16Z05
Received: 18.10.2015
Revised: 18.10.2015
Language:

Citation: M. Dokuchaev, V. Kirichenko, M. Plakhotnyk, “Quivers of $3\times 3$-exponent matrices”, Algebra Discrete Math., 20:1 (2015), 55–68

Citation in format AMSBIB
\Bibitem{DokKirPla15}
\by M.~Dokuchaev, V.~Kirichenko, M.~Plakhotnyk
\paper Quivers of $3\times 3$-exponent matrices
\jour Algebra Discrete Math.
\yr 2015
\vol 20
\issue 1
\pages 55--68
\mathnet{http://mi.mathnet.ru/adm531}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3431951}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000378728700006}


Linking options:
  • http://mi.mathnet.ru/eng/adm531
  • http://mi.mathnet.ru/eng/adm/v20/i1/p55

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Algebra and Discrete Mathematics
    Number of views:
    This page:116
    Full text:43
    References:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020