RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Algebra Discrete Math.: Year: Volume: Issue: Page: Find

 Algebra Discrete Math., 2016, Volume 21, Issue 2, Pages 282–286 (Mi adm568)

RESEARCH ARTICLE

The comb-like representations of cellular ordinal balleans

Igor Protasov, Ksenia Protasova

Taras Shevchenko National University of Kyiv, Department of Cybernetics, Volodymyrska 64, 01033, Kyiv Ukraine

Abstract: Given two ordinal $\lambda$ and $\gamma$, let $f:[0,\lambda) \rightarrow [0,\gamma)$ be a function such that, for each $\alpha<\gamma$, $\sup\{f(t): t\in[0, \alpha]\}<\gamma.$ We define a mapping $d_{f}: [0,\lambda)\times [0,\lambda) \longrightarrow [0,\gamma)$ by the rule: if $x<y$ then $d_{f}(x,y)= d_{f}(y,x)= \sup\{f(t): t\in(x,y]\}$, $d(x,x)=0$. The pair $([0,\lambda), d_{f})$ is called a $\gamma-$comb defined by $f$. We show that each cellular ordinal ballean can be represented as a $\gamma-$comb. In General Asymptology, cellular ordinal balleans play a part of ultrametric spaces.

Keywords: ultrametric space, cellular ballean, ordinal ballean, $(\lambda,\gamma)$-comb.

Full text: PDF file (279 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 54A05, 54E15, 54E30
Language:

Citation: Igor Protasov, Ksenia Protasova, “The comb-like representations of cellular ordinal balleans”, Algebra Discrete Math., 21:2 (2016), 282–286

Citation in format AMSBIB
\Bibitem{ProPro16} \by Igor~Protasov, Ksenia~Protasova \paper The comb-like representations of cellular ordinal balleans \jour Algebra Discrete Math. \yr 2016 \vol 21 \issue 2 \pages 282--286 \mathnet{http://mi.mathnet.ru/adm568} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=3537451} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000382847700009}