|
RESEARCH ARTICLE
On nilpotent Lie algebras of derivations of fraction fields
A. P. Petravchuk Department of Algebra and Mathematical Logic, Faculty of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 64, Volodymyrska street, 01033 Kyiv, Ukraine
Аннотация:
Let $\mathbb K$ be an arbitrary field of characteristic zero and $A$ an integral $\mathbb K$-domain. Denote by $R$ the fraction field of $A$ and by $W(A)=R\operatorname{Der}_{\mathbb K}A$, the Lie algebra of $\mathbb K$-derivations on $R$ obtained from $\operatorname{Der}_{\mathbb K}A$ via multiplication by elements of $R$. If $L\subseteq W(A)$ is a subalgebra of $W(A)$ denote by $\operatorname{rk}_{R}L$ the dimension of the vector space $RL$ over the field $R$ and by $F=R^{L}$ the field of constants of $L$ in $R$. Let $L$ be a nilpotent subalgebra $L\subseteq W(A)$ with $\operatorname{rk}_{R}L\leq 3$. It is proven that the Lie algebra $FL$ (as a Lie algebra over the field $F$) is isomorphic to a finite dimensional subalgebra of the triangular Lie subalgebra $u_{3}(F)$ of the Lie algebra $\operatorname{Der} F[x_{1}, x_{2}, x_{3}]$, where $u_{3}(F)=\{f(x_{2}, x_{3})\frac{\partial}{\partial x_{1}}+g(x_{3})\frac{\partial}{\partial x_{2}}+c\frac{\partial}{\partial x_{3}}\}$ with $f\in F[x_{2}, x_{3}]$, $g\in F[x_3]$, $c\in F$.
Ключевые слова:
Lie algebra, vector field, nilpotent algebra, derivation.
Полный текст:
PDF файл (350 kB)
Список литературы:
PDF файл
HTML файл
Реферативные базы данных:
Тип публикации:
Статья
MSC: Primary 17B66; Secondary 17B05, 13N15 Поступила в редакцию: 10.08.2016 Исправленный вариант: 26.08.2016
Язык публикации: английский
Образец цитирования:
A. P. Petravchuk, “On nilpotent Lie algebras of derivations of fraction fields”, Algebra Discrete Math., 22:1 (2016), 116–128
Цитирование в формате AMSBIB
\RBibitem{Pet16}
\by A.~P.~Petravchuk
\paper On nilpotent Lie algebras of derivations of fraction fields
\jour Algebra Discrete Math.
\yr 2016
\vol 22
\issue 1
\pages 116--128
\mathnet{http://mi.mathnet.ru/adm578}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3573548}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000392708800008}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/adm578 http://mi.mathnet.ru/rus/adm/v22/i1/p116
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Просмотров: |
Эта страница: | 115 | Полный текст: | 46 | Литература: | 24 |
|