  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Algebra Discrete Math.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Algebra Discrete Math., 2012, Volume 13, Issue 1, Pages 18–25 (Mi adm62)  RESEARCH ARTICLE

On $S$-quasinormally embedded subgroups of finite groups

Kh. A. Al-Sharoa, Olga Shemetkovab, Xiaolan Yic

a Al al-Bayt University, St. Al-Zohoor 5–3, Mafraq 25113, Jordan
b Russian Economic University named after G. V. Plekhanov, Stremyanny Per., 36, 117997 Moscow, Russia
c Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

Abstract: Let $G$ be a finite group. A subgroup $A$ is called: 1) $S$-quasinormal in $G$ if $A$ is permutable with all Sylow subgroups in $G$ 2) $S$-quasinormally embedded in $G$ if every Sylow subgroup of $A$ is a Sylow subgroup of some $S$-quasinormal subgroup of $G$. Let $B_{seG}$ be the subgroup generated by all the subgroups of $B$ which are $S$-quasinormally embedded in $G$. A subgroup $B$ is called $SE$-supplemented in $G$ if there exists a subgroup $T$ such that $G=BT$ and $B\cap T\le B_{seG}$. The main result of the paper is the following.
Theorem. Let $H$ be a normal subgroup in $G$, and $p$ a prime divisor of $|H|$ such that $(p-1,|H|)=1$. Let $P$ be a Sylow $p$-subgroup in $H$. Assume that all maximal subgroups in $P$ are $SE$-supplemented in $G$. Then $H$ is $p$-nilpotent and all its $G$-chief $p$-factors are cyclic.

Keywords: Finite group, $p$-nilpotent, $S$-quasinormal subgroup. Full text: PDF file (205 kB) References: PDF file   HTML file

Bibliographic databases:  MSC: 20D10, 20D20, 20D25
Accepted:31.01.2012
Language:

Citation: Kh. A. Al-Sharo, Olga Shemetkova, Xiaolan Yi, “On $S$-quasinormally embedded subgroups of finite groups”, Algebra Discrete Math., 13:1 (2012), 18–25 Citation in format AMSBIB
\Bibitem{Al-SheXia12} \by Kh.~A.~Al-Sharo, Olga~Shemetkova, Xiaolan~Yi \paper On $S$-quasinormally embedded subgroups of~finite groups \jour Algebra Discrete Math. \yr 2012 \vol 13 \issue 1 \pages 18--25 \mathnet{http://mi.mathnet.ru/adm62} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=2963822} \zmath{https://zbmath.org/?q=an:1263.20020} 

 SHARE:      •  Contact us: math-net2020_05 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020