RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Discrete Math., 2012, Volume 13, Issue 1, Pages 18–25 (Mi adm62)  

RESEARCH ARTICLE

On $S$-quasinormally embedded subgroups of finite groups

Kh. A. Al-Sharoa, Olga Shemetkovab, Xiaolan Yic

a Al al-Bayt University, St. Al-Zohoor 53, Mafraq 25113, Jordan
b Russian Economic University named after G. V. Plekhanov, Stremyanny Per., 36, 117997 Moscow, Russia
c Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

Abstract: Let $G$ be a finite group. A subgroup $A$ is called: 1) $S$-quasinormal in $G$ if $A$ is permutable with all Sylow subgroups in $G$ 2) $S$-quasinormally embedded in $G$ if every Sylow subgroup of $A$ is a Sylow subgroup of some $S$-quasinormal subgroup of $G$. Let $B_{seG}$ be the subgroup generated by all the subgroups of $B$ which are $S$-quasinormally embedded in $G$. A subgroup $B$ is called $SE$-supplemented in $G$ if there exists a subgroup $T$ such that $G=BT$ and $B\cap T\le B_{seG}$. The main result of the paper is the following.
Theorem. Let $H$ be a normal subgroup in $G$, and $p$ a prime divisor of $|H|$ such that $(p-1,|H|)=1$. Let $P$ be a Sylow $p$-subgroup in $H$. Assume that all maximal subgroups in $P$ are $SE$-supplemented in $G$. Then $H$ is $p$-nilpotent and all its $G$-chief $p$-factors are cyclic.

Keywords: Finite group, $p$-nilpotent, $S$-quasinormal subgroup.

Full text: PDF file (205 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 20D10, 20D20, 20D25
Received: 31.01.2012
Accepted:31.01.2012
Language:

Citation: Kh. A. Al-Sharo, Olga Shemetkova, Xiaolan Yi, “On $S$-quasinormally embedded subgroups of finite groups”, Algebra Discrete Math., 13:1 (2012), 18–25

Citation in format AMSBIB
\Bibitem{Al-SheXia12}
\by Kh.~A.~Al-Sharo, Olga~Shemetkova, Xiaolan~Yi
\paper On $S$-quasinormally embedded subgroups of~finite groups
\jour Algebra Discrete Math.
\yr 2012
\vol 13
\issue 1
\pages 18--25
\mathnet{http://mi.mathnet.ru/adm62}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2963822}
\zmath{https://zbmath.org/?q=an:1263.20020}


Linking options:
  • http://mi.mathnet.ru/eng/adm62
  • http://mi.mathnet.ru/eng/adm/v13/i1/p18

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Algebra and Discrete Mathematics
    Number of views:
    This page:158
    Full text:76
    References:37
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020