  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Impact factor Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Algebra Discrete Math.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Algebra Discrete Math., 2018, Volume 26, Issue 1, Pages 47–64 (Mi adm669)  RESEARCH ARTICLE

Module decompositions via Rickart modules

A. Harmancia, B. Ungorb

a Department of Mathematics, Hacettepe University, Turkey
b Department of Mathematics, Ankara University, Turkey

Abstract: This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module $M$ has decompositions $M=\operatorname{Soc}(M) \oplus N$ and $M=\operatorname{Rad}(M) \oplus K$ where $N$ and $K$ are Rickart if and only if $M$ is $\operatorname{Soc}(M)$-inverse split and $\operatorname{Rad}(M)$-inverse split, respectively. Right $\operatorname{Soc}( \cdot )$-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring $R$ which has a decomposition $R=\operatorname{Soc}(R_R)\oplus I$ with $I$ a hereditary Rickart module are obtained.

Keywords: $\operatorname{Soc}( \cdot )$-inverse split module, $\operatorname{Rad}( \cdot )$-inverse split module, Rickart module. Full text: PDF file (389 kB) References: PDF file   HTML file
MSC: 16D10, 16D40, 16D80
Revised: 15.12.2017
Language:

Citation: A. Harmanci, B. Ungor, “Module decompositions via Rickart modules”, Algebra Discrete Math., 26:1 (2018), 47–64 Citation in format AMSBIB
\Bibitem{HarUng18} \by A.~Harmanci, B.~Ungor \paper Module decompositions via Rickart modules \jour Algebra Discrete Math. \yr 2018 \vol 26 \issue 1 \pages 47--64 \mathnet{http://mi.mathnet.ru/adm669} 

 SHARE:      •  Contact us: math-net2020_04 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020