RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Discrete Math., 2012, Volume 14, Issue 2, Pages 168–173 (Mi adm91)  

RESEARCH ARTICLE

On $0$-semisimplicity of linear hulls of generators for semigroups generated by idempotents

Vitaliy M. Bondarenkoa, O. M. Tertychnab

a Institute of Mathematics, NAS, Kyiv, Ukraine
b Vadim Hetman Kyiv National Economic University, Kiev, Ukraine

Abstract: Let $I$ be a finite set (without $0$) and $J$ a subset of $I\times I$ without diagonal elements. Let $S(I,J)$ denotes the semigroup generated by $e_0=0$ and $e_i$, $i\in I$, with the following relations: $e_i^2=e_i$ for any $i\in I$, $e_ie_j=0$ for any $(i,j)\in J$. In this paper we prove that, for any finite semigroup $S=S(I,J)$ and any its matrix representation $M$ over a field $k$, each matrix of the form $\sum_{i \in I}\alpha_i M(e_i)$ with $\alpha_i\in k$ is similar to the direct sum of some invertible and zero matrices. We also formulate this fact in terms of elements of the semigroup algebra.

Keywords: semigroup, matrix representations, defining relations, 0-semisimple matrix.

Full text: PDF file (155 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 16G, 20M30
Received: 19.11.2012
Revised: 09.01.2013
Language:

Citation: Vitaliy M. Bondarenko, O. M. Tertychna, “On $0$-semisimplicity of linear hulls of generators for semigroups generated by idempotents”, Algebra Discrete Math., 14:2 (2012), 168–173

Citation in format AMSBIB
\Bibitem{BonTer12}
\by Vitaliy~M.~Bondarenko, O.~M.~Tertychna
\paper On $0$-semisimplicity of linear hulls of generators for semigroups generated by idempotents
\jour Algebra Discrete Math.
\yr 2012
\vol 14
\issue 2
\pages 168--173
\mathnet{http://mi.mathnet.ru/adm91}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3099967}
\zmath{https://zbmath.org/?q=an:1288.20090}


Linking options:
  • http://mi.mathnet.ru/eng/adm91
  • http://mi.mathnet.ru/eng/adm/v14/i2/p168

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Algebra and Discrete Mathematics
    Number of views:
    This page:105
    Full text:53
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020