RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Adv. Math., 2016, Volume 293, Pages 589–605 (Mi admat4)  

This article is cited in 3 scientific papers (total in 3 papers)

New sum-product type estimates over finite fields

Oliver Roche-Newtona, Misha Rudnevb, Ilya D. Shkredovcd

a School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei Province, 430072, PR China
b Department of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
c Steklov Mathematical Institute, Division of Algebra and Number Theory, ul. Gubkina, 8, Moscow, 119991, Russia
d IITP RAS, Bolshoy Karetny per. 19, Moscow, 127994, Russia

Funding Agency Grant Number
National Science Foundation
Austrian Science Fund F5511-N26
Russian Science Foundation 14-11-00433
Part of this research was performed while the authors were visiting the Institute for Pure and Applied Mathematics (IPAM), which is supported by the National Science Foundation. The first author was supported by the Austrian Science Fund (FWF): Project F5511-N26, which is part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications". The third author was supported by grant Russian Science Foundation RSF 14-11-00433.


DOI: https://doi.org/10.1016/j.aim.2016.02.019


Bibliographic databases:

Document Type: Article
Received: 08.08.2014
Revised: 24.07.2015
Accepted:08.02.2016
Language: English

Linking options:
  • http://mi.mathnet.ru/eng/admat4

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. D. Shkredov, “Some remarks on sets with small quotient set”, Sb. Math., 208:12 (2017), 1854–1868  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    2. I. D. Shkredov, “An application of the sum-product phenomenon to sets avoiding several linear equations”, Sb. Math., 209:4 (2018), 580–603  mathnet  crossref  crossref  adsnasa  isi  elib
    3. A. Iosevich, O. Roche-Newton, M. Rudnev, “On discrete values of bilinear forms”, Sb. Math., 209:10 (2018), 1482–1497  mathnet  crossref  crossref  isi  elib
  • Number of views:
    This page:91

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019