Algebra i Logika. Seminar
 RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Archive Impact factor Subscription Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Algebra Logika: Year: Volume: Issue: Page: Find

 Algebra i Logika. Sem., 1967, Volume 6, Number 3, Pages 13–24 (Mi al1103)

On the central series of the free groups of varieties

Yu. M. Gorčakov

Abstract: Let be the variety of all nilpotent groups which have the nilpotent class $\leqslant k$. A. I. Malcev formulated the problem: does the free group $A$ of the variety constructed from the varieties $\mathfrak{N}_{K_1}, \mathfrak{N}_{K_2}, …, \mathfrak{N}_{K_s}$ by means of intersections and multiplications satisfy the following conditions:
• $\bigcap\limits_n\gamma_n(A)=\{1\}$ where $\gamma_n(A)$ is the $n$ member of the descending central series of $A$, $n$ is a natural number,
• the factors $\gamma_n(A)/\gamma_{n+1}(A)$ are free abelian groups?
In this paper the problem is solved for $K$-varieties defined below.
Let $K_1$ be the class of the varieties $\mathfrak{N}_k$ for all natural numbers $k$. We assume that the classes $K_s$ for $s=1,2,…,t$ of the varieties have been constructed. Then we define $K_{t+1}$ as the class consisted of the varieties $(\mathfrak{N}_{K_1}\cap \mathfrak{M}_1)(\mathfrak{N}_{K_2}\cap \mathfrak{M}_2)…(\mathfrak{N}_{K_r}\cap \mathfrak{M}_r$) where $\mathfrak{M}_i\in K_s$ for $s\leqslant t$. Suppose $K=\bigcup\limits_s K_s$. We shall call any variety of $K$ by $K$-variety.

Full text: PDF file (378 kB)

Bibliographic databases:

Citation: Yu. M. Gorčakov, “On the central series of the free groups of varieties”, Algebra i Logika. Sem., 6:3 (1967), 13–24

Citation in format AMSBIB
\Bibitem{Gor67} \by Yu.~M.~Gor{\v{c}}akov \paper On the central series of the free groups of varieties \jour Algebra i Logika. Sem. \yr 1967 \vol 6 \issue 3 \pages 13--24 \mathnet{http://mi.mathnet.ru/al1103} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=0220808} 

• http://mi.mathnet.ru/eng/al1103
• http://mi.mathnet.ru/eng/al/v6/i3/p13

 SHARE:

Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. L. E. Krop, B. I. Plotkin, “Magnus varieties in group representations”, Math. USSR-Sb., 24:4 (1974), 487–510