Algebra i Logika. Seminar
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Logika. Sem., 1967, Volume 6, Number 3, Pages 61–75 (Mi al1108)  

On theorems of Slupecki and Jablonskij

A. I. Malcev


Abstract: Let $P_k$ be the Post algebra [I] of functions whose variables range over the finite set $N_k=\{0,1,…,k-1\}$ ($k\geqslant3$) and whose values are elements of $N_k$. We denote by $P_k^1$ the semigroup of I-place functions from $P_k$ and by $P_k^{1(p)}$ the semigroup of functions of $P_k^1$ assuming not more than $p$ distinct values. A semigroup $G\subset P_k^1$ is said to be $p$ time transitive if for every distinct $a_1,…,a_p\in N_k$ and every $d_1,…,d_p\in N_k$ there is an $\varphi\in G$ such that $\varphi(a_i)=d_i$ ($i=1,…,p$). We say that a sequence of three distinct number $(u,v,w)$ is essential triple for a function $f(x_1,…,x_n)$ if for some $i$ ($1\leqslant i\leqslant n$) there exist $\mathfrak{A}_\alpha=(a_{\alpha_1},…,a_{\alpha_{i-1}})$, $f_\alpha=(b_{\alpha_{i+1}},…,b_{\alpha_n})$, $a, b$ such that $f(a_1, a, f_1)=u$, $f(a_1, b, f_1)=v$, $f(a_2, a, f_2)=w$. In this paper we give a short proof of the following generalization of Jablonskij theorem:
Fоr a subalgebra $A$ of algebra $P_k$ let one of the following 3 conditions be fulfilled:
  • $p\geqslant 4$, $A$ contains a $p$ time transitive subsemigroup $G$ of semigroup $P_k^1$ and a function $f$ assuming all values from the set $M$ of distinct numbers $v_0,v_1,…,v_p$ where $v_0, v_1, v_2$ is an essential triple for $f$.
  • $p=3$, $A$ contains a $p$ time transitive subsemigroup $G$ of semigroup $P_k^{1(p)}$ and a function $f$ assuming all values from the set $M=\{v_0,…,v_m\}$ where $m=3,4$ and $v_0, v_1, v_2$ is an essential triple for $f$.
  • $p=2$, $A$ contains a $p$ time transitive subsemigroup $G$ of semigroup $P_k^{1(p)}$ and a function $f$ assuming only three values $v_0,v_1,v_2$ where $M=(v_0,v_1,v_2)$ is an essential triple for $f$.
Than $A$ contains arbitrary function which values belong to $M$ and arbitrary function assuming not more than $p$ distinct values.

Full text: PDF file (501 kB)

Bibliographic databases:
Received: 20.05.1967

Citation: A. I. Malcev, “On theorems of Slupecki and Jablonskij”, Algebra i Logika. Sem., 6:3 (1967), 61–75

Citation in format AMSBIB
\Bibitem{Mal67}
\by A.~I.~Malcev
\paper On theorems of Slupecki and Jablonskij
\jour Algebra i Logika. Sem.
\yr 1967
\vol 6
\issue 3
\pages 61--75
\mathnet{http://mi.mathnet.ru/al1108}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0230671}


Linking options:
  • http://mi.mathnet.ru/eng/al1108
  • http://mi.mathnet.ru/eng/al/v6/i3/p61

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:16
    Full text:6

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021