Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 1970, Volume 9, Number 4, Pages 422–427 (Mi al1254)  

This article is cited in 4 scientific papers (total in 4 papers)

The $m$-degrees of recursively enumerable sets

S. D. Denisov


Full text: PDF file (227 kB)

Bibliographic databases:
UDC: 518:5
Received: 10.04.1970

Citation: S. D. Denisov, “The $m$-degrees of recursively enumerable sets”, Algebra Logika, 9:4 (1970), 422–427

Citation in format AMSBIB
\Bibitem{Den70}
\by S.~D.~Denisov
\paper The $m$-degrees of recursively enumerable sets
\jour Algebra Logika
\yr 1970
\vol 9
\issue 4
\pages 422--427
\mathnet{http://mi.mathnet.ru/al1254}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0286652}


Linking options:
  • http://mi.mathnet.ru/eng/al1254
  • http://mi.mathnet.ru/eng/al/v9/i4/p422

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Degtev, “Reducibilities of tabular type in the theory of algorithms”, Russian Math. Surveys, 34:3 (1979), 155–192  mathnet  crossref  mathscinet  zmath
    2. I. A. Lavrov, “Computably enumerable sets and related issues”, Algebra and Logic, 50:6 (2012), 494–511  mathnet  crossref  mathscinet  zmath  isi
    3. L. A. Bokut, “Early history of the theory of rings in Novosibirsk”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 2, 5–23  mathnet  mathscinet
    4. V. L. Selivanov, “Predpolnye numeratsii”, Trudy seminara kafedry algebry i matematicheskoi logiki Kazanskogo (Privolzhskogo) federalnogo universiteta, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 157, VINITI RAN, M., 2018, 106–134  mathnet  mathscinet
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:11
    Full text:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021