Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 1970, Volume 9, Number 4, Pages 458–472 (Mi al1257)  

This article is cited in 3 scientific papers (total in 3 papers)

Primitive elements of free Lie algebras

G. P. Kykin


Full text: PDF file (531 kB)

Bibliographic databases:
UDC: 519.48
Received: 07.01.1970

Citation: G. P. Kykin, “Primitive elements of free Lie algebras”, Algebra Logika, 9:4 (1970), 458–472

Citation in format AMSBIB
\Bibitem{Kuk70}
\by G.~P.~Kykin
\paper Primitive elements of free Lie algebras
\jour Algebra Logika
\yr 1970
\vol 9
\issue 4
\pages 458--472
\mathnet{http://mi.mathnet.ru/al1257}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=0284483}


Linking options:
  • http://mi.mathnet.ru/eng/al1257
  • http://mi.mathnet.ru/eng/al/v9/i4/p458

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Zolotykh, A. A. Mikhalev, U. U. Umirbaev, “An example of a non-free Lie algebra of cohomological dimension 1”, Russian Math. Surveys, 49:1 (1994), 254–254  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. V. A. Roman'kov, I. V. Chirkov, M. A. Shevelin, “Nonlinearity of the automorphism groups of some free algebras”, Siberian Math. J., 45:5 (2004), 974–977  mathnet  crossref  mathscinet  zmath  isi
    3. V. A. Artamonov, A. V. Klimakov, A. A. Mikhalev, A. V. Mikhalev, “Primitive and almost primitive elements of Schreier varieties”, J. Math. Sci., 237:2 (2019), 157–179  mathnet  crossref  elib
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:18
    Full text:5

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021