|
This article is cited in 7 scientific papers (total in 7 papers)
Zeros in Tables of Characters for the Groups $S_n$ and $A_n$. II
V. A. Belonogov Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract:
Let $P(n)$ be the set of all partitions of a natural number $n$. In the representation theory of symmetric groups, for every partition $\alpha\in P(n)$, the partition $h(\alpha)\in P(n)$ is defined so as to produce a certain set of zeros in the character table for $S_n$. Previously, the analog $f(\alpha)$ of $h(\alpha)$ was obtained pointing out an extra set of zeros in the table mentioned. Namely, $h(\alpha)$ is greatest (under the lexicographic ordering $\le$) of the partitions $\beta$ of $n$ such that $\chi^\alpha(g_\beta)\ne0$, and $f(\alpha)$ is greatest of the partitions $\gamma$ of $n$ that are opposite in sign to $h(\alpha)$ and are such that $\chi^\alpha(g_\gamma)\ne0$, where $\chi^\alpha$ is an irreducible character of $S_n$, indexed by $\alpha$, and $g_\beta$ is an element in the conjugacy class of $S_n$, indexed by $\beta$. For $\alpha\in P(n)$, under some natural restrictions, here, we construct new partitions $h'(\alpha)$ and $f'(\alpha)$ of $n$ possessing the following properties.
(A) Let $\alpha\in P(n)$ and $n\geqslant 3$. Then $h'(\alpha)$ is identical is sign to $h(\alpha)$, $\chi^\alpha(g_{h'(\alpha)})\ne0$, but $\chi^\alpha(g_\gamma)=0$ for all $\gamma\in P(n)$ such that the sign of $\gamma$ coincides with one of $h(\alpha)$,
and $h'(\alpha)<\gamma<h(\alpha)$.
(B) Let $\alpha\in P(n)$, $\alpha\ne\alpha'$, and $n\geqslant4$. Then $f'(\alpha)$ is identical in sign to $f(\alpha)$, $\chi^\alpha(g_{f'(\alpha)})\ne0$, but $\chi^\alpha(g_\gamma)=0$ for all $\gamma\in P(n)$ such that the sign of $\gamma$ coincides with one of $f(\alpha)$, and $f'(\alpha)<\gamma<f(\alpha)$. The results obtained are then applied to study pairs of semiproportional irreducible characters in $A_n$.
Keywords:
symmetric group, alternating group, character table of a group
Full text:
PDF file (227 kB)
References:
PDF file
HTML file
English version:
Algebra and Logic, 2005, 44:6, 357–369
Bibliographic databases:
UDC:
512.54 Received: 07.02.2005
Citation:
V. A. Belonogov, “Zeros in Tables of Characters for the Groups $S_n$ and $A_n$. II”, Algebra Logika, 44:6 (2005), 643–663; Algebra and Logic, 44:6 (2005), 357–369
Citation in format AMSBIB
\Bibitem{Bel05}
\by V.~A.~Belonogov
\paper Zeros in Tables of Characters for the Groups~$S_n$ and~$A_n$.~II
\jour Algebra Logika
\yr 2005
\vol 44
\issue 6
\pages 643--663
\mathnet{http://mi.mathnet.ru/al135}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2213300}
\zmath{https://zbmath.org/?q=an:1104.20012}
\transl
\jour Algebra and Logic
\yr 2005
\vol 44
\issue 6
\pages 357--369
\crossref{https://doi.org/10.1007/s10469-005-0035-7}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-28644438768}
Linking options:
http://mi.mathnet.ru/eng/al135 http://mi.mathnet.ru/eng/al/v44/i6/p643
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Cycle of papers
This publication is cited in the following articles:
-
V. A. Belonogov, “Irreducible characters with equal roots in the groups $S_n$ and $A_n$”, Algebra and Logic, 46:1 (2007), 1–15
-
V. A. Belonogov, “Certain pairs of irreducible characters of the groups $S_n$ and $A_n$”, Proc. Steklov Inst. Math. (Suppl.), 257, suppl. 1 (2007), S10–S46
-
V. A. Belonogov, “Irreducible characters of the group $S_n$ that are semiproportional on $A_n$”, Algebra and Logic, 47:2 (2008), 77–90
-
V. A. Belonogov, “The young diagrams of a pair of irreducible characters of $S_n$ with the same zero set on $S^\varepsilon_n$”, Siberian Math. J., 49:5 (2008), 784–795
-
V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. I”, Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S150–S171
-
Belonogov V.A., “On character tables and abstract structure of finite groups”, Character Theory of Finite Groups, Contemporary Mathematics, 524, 2010, 1–10
-
V. A. Belonogov, “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. VII”, Tr. IMM UrO RAN, 17, no. 1, 2011, 3–16
|
Number of views: |
This page: | 257 | Full text: | 72 | References: | 48 | First page: | 1 |
|