General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Algebra Logika:

Personal entry:
Save password
Forgotten password?

Algebra Logika, 2005, Volume 44, Number 6, Pages 643–663 (Mi al135)  

This article is cited in 7 scientific papers (total in 7 papers)

Zeros in Tables of Characters for the Groups $S_n$ and $A_n$. II

V. A. Belonogov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences

Abstract: Let $P(n)$ be the set of all partitions of a natural number $n$. In the representation theory of symmetric groups, for every partition $\alpha\in P(n)$, the partition $h(\alpha)\in P(n)$ is defined so as to produce a certain set of zeros in the character table for $S_n$. Previously, the analog $f(\alpha)$ of $h(\alpha)$ was obtained pointing out an extra set of zeros in the table mentioned. Namely, $h(\alpha)$ is greatest (under the lexicographic ordering $\le$) of the partitions $\beta$ of $n$ such that $\chi^\alpha(g_\beta)\ne0$, and $f(\alpha)$ is greatest of the partitions $\gamma$ of $n$ that are opposite in sign to $h(\alpha)$ and are such that $\chi^\alpha(g_\gamma)\ne0$, where $\chi^\alpha$ is an irreducible character of $S_n$, indexed by $\alpha$, and $g_\beta$ is an element in the conjugacy class of $S_n$, indexed by $\beta$. For $\alpha\in P(n)$, under some natural restrictions, here, we construct new partitions $h'(\alpha)$ and $f'(\alpha)$ of $n$ possessing the following properties.
(A) Let $\alpha\in P(n)$ and $n\geqslant 3$. Then $h'(\alpha)$ is identical is sign to $h(\alpha)$, $\chi^\alpha(g_{h'(\alpha)})\ne0$, but $\chi^\alpha(g_\gamma)=0$ for all $\gamma\in P(n)$ such that the sign of $\gamma$ coincides with one of $h(\alpha)$, and $h'(\alpha)<\gamma<h(\alpha)$.
(B) Let $\alpha\in P(n)$, $\alpha\ne\alpha'$, and $n\geqslant4$. Then $f'(\alpha)$ is identical in sign to $f(\alpha)$, $\chi^\alpha(g_{f'(\alpha)})\ne0$, but $\chi^\alpha(g_\gamma)=0$ for all $\gamma\in P(n)$ such that the sign of $\gamma$ coincides with one of $f(\alpha)$, and $f'(\alpha)<\gamma<f(\alpha)$. The results obtained are then applied to study pairs of semiproportional irreducible characters in $A_n$.

Keywords: symmetric group, alternating group, character table of a group

Full text: PDF file (227 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2005, 44:6, 357–369

Bibliographic databases:

UDC: 512.54
Received: 07.02.2005

Citation: V. A. Belonogov, “Zeros in Tables of Characters for the Groups $S_n$ and $A_n$. II”, Algebra Logika, 44:6 (2005), 643–663; Algebra and Logic, 44:6 (2005), 357–369

Citation in format AMSBIB
\by V.~A.~Belonogov
\paper Zeros in Tables of Characters for the Groups~$S_n$ and~$A_n$.~II
\jour Algebra Logika
\yr 2005
\vol 44
\issue 6
\pages 643--663
\jour Algebra and Logic
\yr 2005
\vol 44
\issue 6
\pages 357--369

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. V. A. Belonogov, “Irreducible characters with equal roots in the groups $S_n$ and $A_n$”, Algebra and Logic, 46:1 (2007), 1–15  mathnet  crossref  mathscinet  zmath  isi
    2. V. A. Belonogov, “Certain pairs of irreducible characters of the groups $S_n$ and $A_n$”, Proc. Steklov Inst. Math. (Suppl.), 257, suppl. 1 (2007), S10–S46  mathnet  crossref  mathscinet  elib
    3. V. A. Belonogov, “Irreducible characters of the group $S_n$ that are semiproportional on $A_n$”, Algebra and Logic, 47:2 (2008), 77–90  mathnet  crossref  mathscinet  zmath  isi
    4. V. A. Belonogov, “The young diagrams of a pair of irreducible characters of $S_n$ with the same zero set on $S^\varepsilon_n$”, Siberian Math. J., 49:5 (2008), 784–795  mathnet  crossref  mathscinet  isi
    5. V. A. Belonogov, “On irreducible characters of the group $S_n$ that are semiproportional on $A_n$ or $S_n\setminus A_n$. I”, Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S150–S171  mathnet  crossref  zmath  isi  elib
    6. Belonogov V.A., “On character tables and abstract structure of finite groups”, Character Theory of Finite Groups, Contemporary Mathematics, 524, 2010, 1–10  crossref  mathscinet  zmath  isi
    7. V. A. Belonogov, “O neprivodimykh kharakterakh gruppy $S_n$, poluproportsionalnykh na $A_n$ ili na $S_n\setminus A_n$. VII”, Tr. IMM UrO RAN, 17, no. 1, 2011, 3–16  mathnet  elib
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:257
    Full text:72
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019