Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2006, Volume 45, Number 5, Pages 520–537 (Mi al158)  

Conjugately dense subgroups of free products of groups with amalgamation

S. A. Zyubin

Tomsk Polytechnic University

Abstract: A subgroup having non-empty intersection with each class of conjugate elements of the group is said to be conjugately dense. It is shown that, under certain conditions, the number of conjugately dense subgroups in a free product with amalgamation is not less than some cardinal. As a consequence, P. Neumann's conjecture in the Kourovka notebook (Question 6.38) is refuted. It is also stated that a modular group and a non-Abelian group of countable or finite rank possess continuum many pairwise non-conjugate conjugately dense subgroups.

Keywords: linear group, free product with amalgamation, conjugately dense subgroup, field with discrete valuation

Full text: PDF file (231 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2006, 45:5, 296–305

Bibliographic databases:

UDC: 512.54
Received: 17.10.2005
Revised: 06.06.2006

Citation: S. A. Zyubin, “Conjugately dense subgroups of free products of groups with amalgamation”, Algebra Logika, 45:5 (2006), 520–537; Algebra and Logic, 45:5 (2006), 296–305

Citation in format AMSBIB
\Bibitem{Zyu06}
\by S.~A.~Zyubin
\paper Conjugately dense subgroups of free products of groups with amalgamation
\jour Algebra Logika
\yr 2006
\vol 45
\issue 5
\pages 520--537
\mathnet{http://mi.mathnet.ru/al158}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2307693}
\zmath{https://zbmath.org/?q=an:1156.20038}
\transl
\jour Algebra and Logic
\yr 2006
\vol 45
\issue 5
\pages 296--305
\crossref{https://doi.org/10.1007/s10469-006-0028-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750705624}


Linking options:
  • http://mi.mathnet.ru/eng/al158
  • http://mi.mathnet.ru/eng/al/v45/i5/p520

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:223
    Full text:76
    References:20
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022