RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2002, Volume 41, Number 2, Pages 143–154 (Mi al177)  

This article is cited in 9 scientific papers (total in 9 papers)

Friedberg Numberings of Families of $n$-Computably Enumerable Sets

S. S. Goncharova, S. Lemppb, R. Solomonb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b University of Wisconsin-Madison

Abstract: We establish a number of results on numberings, in particular, on Friedberg numberings, of families of d.c.e. sets. First, it is proved that there exists a Friedberg numbering of the family of all d.c.e. sets. We also show that this result, patterned on Friedberg's famous theorem for the family of all c.e. sets, holds for the family of all $n$-c.e. sets for any $n>2$. Second, it is stated that there exists an infinite family of d. c. e. sets without a Friedberg numbering. Third, it is shown that there exists an infinite family of c. e. sets (treated as a family of d. c. e. sets) with a numbering which is unique up to equivalence. Fourth, it is proved that there exists a family of d. c. e. sets with a least numbering (under reducibility) which is Friedberg but is not the only numbering (modulo reducibility).

Full text: PDF file (1206 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2002, 41:2, 81–86

Bibliographic databases:

UDC: 510.10+510.57
Received: 22.11.2000

Citation: S. S. Goncharov, S. Lempp, R. Solomon, “Friedberg Numberings of Families of $n$-Computably Enumerable Sets”, Algebra Logika, 41:2 (2002), 143–154; Algebra and Logic, 41:2 (2002), 81–86

Citation in format AMSBIB
\Bibitem{GonLemSol02}
\by S.~S.~Goncharov, S.~Lempp, R.~Solomon
\paper Friedberg Numberings of Families of $n$-Computably Enumerable Sets
\jour Algebra Logika
\yr 2002
\vol 41
\issue 2
\pages 143--154
\mathnet{http://mi.mathnet.ru/al177}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1922986}
\zmath{https://zbmath.org/?q=an:1063.03028}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 2
\pages 81--86
\crossref{https://doi.org/10.1023/A:1015352513117}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846184874}


Linking options:
  • http://mi.mathnet.ru/eng/al177
  • http://mi.mathnet.ru/eng/al/v41/i2/p143

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Badaev S.A., Talasbaeva Zh.T., “Computable numberings in the hierarchy of Ershov”, Mathematical Logic in Asia, 2006, 17–30  crossref  mathscinet  zmath  adsnasa  isi
    2. Brodhead P., Cenzer D., “Effectively closed sets and enumerations”, Archive For Mathematical Logic, 46:7–8 (2008), 565–582  crossref  mathscinet  zmath  isi  scopus
    3. S. S. Goncharov, N. T. Kogabaev, “O $\Sigma^0_1$-klassifikatsii otnoshenii na vychislimykh strukturakh”, Vestn. NGU. Ser. matem., mekh., inform., 8:4 (2008), 23–32  mathnet
    4. S. S. Ospichev, “Some Properties of Numberings in Various Levels in Ershov's Hierarchy”, J. Math. Sci., 188:4 (2013), 441–448  mathnet  crossref
    5. S. S. Ospichev, “Infinite family of $\Sigma_a^{-1}$-Sets with only One Computable Numbering”, J. Math. Sci., 188:4 (2013), 449–451  mathnet  crossref
    6. N. A. Bazhenov, “The branching theorem and computable categoricity in the Ershov hierarchy”, Algebra and Logic, 54:2 (2015), 91–104  mathnet  crossref  crossref  mathscinet  isi
    7. S. S. Ospichev, “Computable families of sets in Ershov hierarchy without principal numberings”, J. Math. Sci., 215:4 (2016), 529–536  mathnet  crossref
    8. S. S. Ospichev, “Friedberg numberings in the Ershov hierarchy”, Algebra and Logic, 54:4 (2015), 283–295  mathnet  crossref  crossref  mathscinet  isi
    9. Badaev S.A., Manat M., Sorbi A., “Friedberg Numberings in the Ershov Hierarchy”, Arch. Math. Log., 54:1-2 (2015), 59–73  crossref  mathscinet  zmath  isi  elib  scopus
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:236
    Full text:78
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018