Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2002, Volume 41, Number 5, Pages 515–530 (Mi al195)  

This article is cited in 1 scientific paper (total in 1 paper)

Automorphism Groups of Computably Enumerable Predicates

E. Combarro


Abstract: We study automorphism groups of two important predicates in computability theory: the predicate $x\in W_y$ and the graph of a universal partially computable function. It is shown that all automorphisms of the predicates in question are computable. The actions of the automorphism groups on some index sets are examined, and we establish a number of results on the structure of these. We also look into homomorphisms of the two predicates. In this case the situation changes: all homomorphisms of the universal function are computable, but in each Turing degree, homomorphisms of $x\in W_y$ exist.

Keywords: automorphism group, homomorphism, computably enumerable predicate

Full text: PDF file (1259 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2002, 41:5, 285–294

Bibliographic databases:

UDC: 510.57
Received: 22.12.2000

Citation: E. Combarro, “Automorphism Groups of Computably Enumerable Predicates”, Algebra Logika, 41:5 (2002), 515–530; Algebra and Logic, 41:5 (2002), 285–294

Citation in format AMSBIB
\Bibitem{Com02}
\by E.~Combarro
\paper Automorphism Groups of Computably Enumerable Predicates
\jour Algebra Logika
\yr 2002
\vol 41
\issue 5
\pages 515--530
\mathnet{http://mi.mathnet.ru/al195}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1953177}
\zmath{https://zbmath.org/?q=an:1010.03031}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 5
\pages 285--294
\crossref{https://doi.org/10.1023/A:1020975619422}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249102789}


Linking options:
  • http://mi.mathnet.ru/eng/al195
  • http://mi.mathnet.ru/eng/al/v41/i5/p515

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Combarro E.F., “Symmetry of the universal computable function: A study of its automorphisms, homomorphisms and isomorphic embeddings”, Logic Colloquium '02, Lecture Notes in Logic, 27, 2006, 152–171  mathscinet  zmath  isi
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:175
    Full text:65
    References:30
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021