RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2003, Volume 42, Number 2, Pages 131–160 (Mi al22)  

This article is cited in 16 scientific papers (total in 16 papers)

A Generalization of Fibonacci Groups

V. G. Bardakov, A. Yu. Vesnin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We study the class of cyclically presented groups which contain Fibonacci groups and Sieradski groups. Conditions are specified for these groups to be finite, pairwise isomorphic, or aspherical. As a partial answer to the question of Cavicchioli, Hegenbarth, and Repov, it is stated that there exists a wide subclass of groups with an odd number of generators cannot appear as fundamental groups of hyperbolic three-dimensional manifolds of finite volume.

Full text: PDF file (303 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2003, 42:2, 73–91

Bibliographic databases:

UDC: 512.817+515.162
Received: 12.02.2001

Citation: V. G. Bardakov, A. Yu. Vesnin, “A Generalization of Fibonacci Groups”, Algebra Logika, 42:2 (2003), 131–160; Algebra and Logic, 42:2 (2003), 73–91

Citation in format AMSBIB
\Bibitem{BarVes03}
\by V.~G.~Bardakov, A.~Yu.~Vesnin
\paper A Generalization of Fibonacci Groups
\jour Algebra Logika
\yr 2003
\vol 42
\issue 2
\pages 131--160
\mathnet{http://mi.mathnet.ru/al22}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2003626}
\zmath{https://zbmath.org/?q=an:1031.57001}
\transl
\jour Algebra and Logic
\yr 2003
\vol 42
\issue 2
\pages 73--91
\crossref{https://doi.org/10.1023/A:1023346206070}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-14644436785}


Linking options:
  • http://mi.mathnet.ru/eng/al22
  • http://mi.mathnet.ru/eng/al/v42/i2/p131

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Cavicchioli A, Repovs D, Spaggiari F, “Families of group presentations related to topology”, Journal of Algebra, 286:1 (2005), 41–56  crossref  mathscinet  zmath  isi
    2. Spaggiari F., “Asphericity of symmetric presentations”, Publicacions Matematiques, 50:1 (2006), 133–147  crossref  mathscinet  zmath  isi  elib  scopus
    3. Cavicchioli A., O'Brien E.A., Spaggiari F., “On some questions about a family of cyclically presented groups”, Journal of Algebra, 320:11 (2008), 4063–4072  crossref  mathscinet  zmath  isi  scopus
    4. Williams G., “The aspherical Cavicchioli-Hegenbarth-Repovs generalized Fibonacci groups”, Journal of Group Theory, 12:1 (2009), 139–149  crossref  mathscinet  zmath  isi  scopus
    5. Edjvet M., Williams G., “The cyclically presented groups with relators x(i) xi+k xi+l”, Groups Geometry and Dynamics, 4:4 (2010), 759–775  crossref  mathscinet  zmath  isi  scopus
    6. Telloni A.I., “Combinatorics of a class of groups with cyclic presentation”, Discrete Mathematics, 310:22 (2010), 3072–3079  crossref  mathscinet  zmath  isi  elib  scopus
    7. Williams G., “Unimodular Integer Circulants Associated with Trinomials”, International Journal of Number Theory, 6:4 (2010), 869–876  crossref  mathscinet  zmath  isi  scopus
    8. Williams G., “Groups of Fibonacci Type Revisited”, Int. J. Algebr. Comput., 22:8 (2012), 1240002  crossref  mathscinet  zmath  isi  elib  scopus
    9. Howie J., Williams G., “Tadpole Labelled Oriented Graph Groups and Cyclically Presented Groups”, J. Algebra, 371 (2012), 521–535  crossref  mathscinet  zmath  isi  elib  scopus
    10. Williams G., “Largeness and Sq-Universality of Cyclically Presented Groups”, Int. J. Algebr. Comput., 22:4 (2012), 1250035  crossref  mathscinet  zmath  isi  scopus
    11. Williams G., “Fibonacci Type Semigroups”, Algebr. Colloq., 21:4 (2014), 647–652  crossref  mathscinet  zmath  isi  scopus
    12. Bogley W.A., “on Shift Dynamics For Cyclically Presented Groups”, J. Algebra, 418 (2014), 154–173  crossref  mathscinet  zmath  isi  scopus
    13. Bogley W.A., Williams G., “Coherence, Subgroup Separability, and Metacyclic Structures For a Class of Cyclically Presented Groups”, J. Algebra, 480 (2017), 266–297  crossref  mathscinet  zmath  isi
    14. Howie J., Williams G., “Fibonacci Type Presentations and 3-Manifolds”, Topology Appl., 215 (2017), 24–34  crossref  mathscinet  zmath  isi  scopus
    15. A. Yu. Vesnin, T. A. Kozlovskaya, “Mnogoobraziya Briskorna, obobschennye gruppy Siradski i nakrytiya linzovykh prostranstv”, Tr. IMM UrO RAN, 23, no. 4, 2017, 85–97  mathnet  crossref  elib
    16. Motegi K., Teragaito M., “Generalized Torsion Elements and Bi-Orderability of 3-Manifold Groups”, Can. Math. Bul.-Bul. Can. Math., 60:4 (2017), 830–844  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:370
    Full text:115
    References:41
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019