RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2001, Volume 40, Number 5, Pages 507–522 (Mi al233)  

This article is cited in 9 scientific papers (total in 9 papers)

Rogers Semilattices of Families of Arithmetic Sets

S. A. Badaeva, S. S. Goncharovb

a Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We look into algebraic properties of Rogers semilattices of arithmetic sets, such as the existence of minimal elements, minimal covers, and ideals without minimal elements.

Keywords: Rogers semilattice, arithmetic set, minimal element, minimal cover, and ideal

Full text: PDF file (1516 kB)

English version:
Algebra and Logic, 2001, 40:5, 283–291

Bibliographic databases:

UDC: 510.5
Received: 11.10.2000

Citation: S. A. Badaev, S. S. Goncharov, “Rogers Semilattices of Families of Arithmetic Sets”, Algebra Logika, 40:5 (2001), 507–522; Algebra and Logic, 40:5 (2001), 283–291

Citation in format AMSBIB
\Bibitem{BadGon01}
\by S.~A.~Badaev, S.~S.~Goncharov
\paper Rogers Semilattices of Families of Arithmetic Sets
\jour Algebra Logika
\yr 2001
\vol 40
\issue 5
\pages 507--522
\mathnet{http://mi.mathnet.ru/al233}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1917529}
\zmath{https://zbmath.org/?q=an:0989.03040}
\transl
\jour Algebra and Logic
\yr 2001
\vol 40
\issue 5
\pages 283--291
\crossref{https://doi.org/10.1023/A:1012516217265}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18244407155}


Linking options:
  • http://mi.mathnet.ru/eng/al233
  • http://mi.mathnet.ru/eng/al/v40/i5/p507

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Yu. Podzorov, “Initial Segments in Rogers Semilattices of $\Sigma^0_n$-Computable Numberings”, Algebra and Logic, 42:2 (2003), 121–129  mathnet  crossref  mathscinet  zmath
    2. S. Yu. Podzorov, “Local Structure of Rogers Semilattices of $\Sigma^0_n$-Computable Numberings”, Algebra and Logic, 44:1 (2005), 82–94  mathnet  crossref  mathscinet  zmath
    3. S. A. Badaev, S. S. Goncharov, A. Sorbi, “Elementary Theories for Rogers Semilattices”, Algebra and Logic, 44:3 (2006), 143–147  mathnet  crossref  mathscinet  zmath
    4. N. A. Baklanova, “Minimalnye elementy i minimalnye nakrytiya v polureshetke Rodzhersa vychislimykh numeratsii v giperarifmeticheskoi ierarkhii”, Vestn. NGU. Ser. matem., mekh., inform., 11:3 (2011), 77–84  mathnet
    5. N. A. Baklanova, “Nerazreshimost elementarnykh teorii polureshetok Rodzhersa na predelnykh urovnyakh arifmeticheskoi ierarkhii”, Vestn. NGU. Ser. matem., mekh., inform., 11:4 (2011), 3–7  mathnet
    6. S. A. Badaev, S. S. Goncharov, “Generalized computable universal numberings”, Algebra and Logic, 53:5 (2014), 355–364  mathnet  crossref  mathscinet  isi
    7. A. A. Issakhov, “Ideals without minimal elements in Rogers semilattices”, Algebra and Logic, 54:3 (2015), 197–203  mathnet  crossref  crossref  mathscinet  isi
    8. S. S. Ospichev, “Computable families of sets in Ershov hierarchy without principal numberings”, J. Math. Sci., 215:4 (2016), 529–536  mathnet  crossref
    9. M. V. Dorzhieva, “Nerazreshimost elementarnykh teorii polureshetok Rodzhersa analiticheskoi ierarkhii”, Sib. elektron. matem. izv., 13 (2016), 148–153  mathnet  crossref
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:255
    Full text:107
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018