RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Archive Impact factor Subscription Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Algebra Logika: Year: Volume: Issue: Page: Find

 Algebra Logika, 2009, Volume 48, Number 6, Pages 793–818 (Mi al424)

Irreducible algebraic sets over divisible decomposed rigid groups

N. S. Romanovskiiab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: A soluble group $G$ is said to be rigid if it contains a normal series of the form
$$G=G_1>G_2>…>G_p>G_{p+1}=1,$$
whose quotients $G_i/G_{i+1}$ are Abelian and are torsion-free when treated as right $\mathbb Z[G/G_i]$-modules. Free soluble groups are important examples of rigid groups. A rigid group $G$ is divisible if elements of a quotient $G_i/G_{i+1}$ are divisible by nonzero elements of a ring $\mathbb Z[G/G_i]$, or, in other words, $G_i/G_{i+1}$ is a vector space over a division ring $Q(G/G_i)$ of quotients of that ring. A rigid group $G$ is decomposed if it splits into a semidirect product $A_1A_2…A_p$ of Abelian groups $A_i\cong G_i/G_{i+1}$. A decomposed divisible rigid group is uniquely defined by cardinalities $\alpha_i$ of bases of suitable vector spaces $A_i$, and we denote it by $M(\alpha_1,…,\alpha_ p)$.
The concept of a rigid group appeared in [arXiv:0808.2932v1 [math.GR]], where the dimension theory is constructed for algebraic geometry over finitely generated rigid groups. In [Algebra i Logika, <b>48</b>:2 (2009), 258–279], all rigid groups were proved to be equationally Noetherian, and it was stated that any rigid group is embedded in a suitable decomposed divisible rigid group $M(\alpha_1,…,\alpha_ p)$. Our present goal is to derive important information directly about algebraic geometry over $M(\alpha_1,…,\alpha_ p)$. Namely, irreducible algebraic sets are characterized in the language of coordinate groups of these sets, and we describe groups that are universally equivalent over $M(\alpha_1,…,\alpha_ p)$ using the language of equations.

Keywords: algebraic geometry, irreducible algebraic set, rigid group, universally equivalent groups.

Full text: PDF file (257 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2009, 48:6, 449–464

Bibliographic databases:

UDC: 512.542

Citation: N. S. Romanovskii, “Irreducible algebraic sets over divisible decomposed rigid groups”, Algebra Logika, 48:6 (2009), 793–818; Algebra and Logic, 48:6 (2009), 449–464

Citation in format AMSBIB
\Bibitem{Rom09} \by N.~S.~Romanovskii \paper Irreducible algebraic sets over divisible decomposed rigid groups \jour Algebra Logika \yr 2009 \vol 48 \issue 6 \pages 793--818 \mathnet{http://mi.mathnet.ru/al424} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=2640965} \zmath{https://zbmath.org/?q=an:1245.20054} \transl \jour Algebra and Logic \yr 2009 \vol 48 \issue 6 \pages 449--464 \crossref{https://doi.org/10.1007/s10469-009-9071-z} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000273168500005} \scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949270192} 

• http://mi.mathnet.ru/eng/al424
• http://mi.mathnet.ru/eng/al/v48/i6/p793

 SHARE:

Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. N. S. Romanovskii, “Coproducts of rigid groups”, Algebra and Logic, 49:6 (2010), 539–550
2. A. G. Myasnikov, N. S. Romanovskii, “Universal theories for rigid soluble groups”, Algebra and Logic, 50:6 (2012), 539–552
3. Romanovskiy N.S., “Presentations for Rigid Solvable Groups”, J. Group Theory, 15:6 (2012), 793–810
4. N. S. Romanovskii, “Irreducibility of an affine space in algebraic geometry over a group”, Algebra and Logic, 52:3 (2013), 262–265
5. S. G. Afanas'eva, N. S. Romanovskii, “Rigid metabelian pro-$p$-groups”, Algebra and Logic, 53:2 (2014), 102–113
6. D. V. Ovchinnikov, “Automorphisms of divisible rigid groups”, Algebra and Logic, 53:2 (2014), 133–139
7. Myasnikov A.G. Romanovskii N.S., “Logical Aspects of the Theory of Divisible Rigid Groups”, Dokl. Math., 90:3 (2014), 697–698
8. N. S. Romanovskiy, “Hilbert's Nullstellensatz in algebraic geometry over rigid soluble groups”, Izv. Math., 79:5 (2015), 1051–1063
9. Ch. K. Gupta, N. S. Romanovskii, “$\mathbb Q$-completions of free solvable groups”, Algebra and Logic, 54:2 (2015), 127–139
10. N. S. Romanovskii, “Algebraic sets in a finitely generated rigid $2$-step solvable pro-$p$-group”, Algebra and Logic, 54:6 (2016), 478–488
11. N. S. Romanovskii, “Decomposition of a group over an Abelian normal subgroup”, Algebra and Logic, 55:4 (2016), 315–326
12. N. S. Romanovskii, “Partially divisible completions of rigid metabelian pro-$p$-groups”, Algebra and Logic, 55:5 (2016), 376–386
13. A. G. Myasnikov, N. S. Romanovskii, “Model-theoretic aspects of the theory of divisible rigid soluble groups”, Algebra and Logic, 56:1 (2017), 82–84
14. V. A. Roman'kov, “Solvability of equations in classes of solvable groups and Lie algebras”, Algebra and Logic, 56:3 (2017), 251–255
15. E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. VI. Geometric equivalence”, Algebra and Logic, 56:4 (2017), 281–294
16. N. S. Romanovskii, “Divisible rigid groups. Algebraic closedness and elementary theory”, Algebra and Logic, 56:5 (2017), 395–408
17. S. G. Afanas'eva, “Algebraic sets in a divisible $2$-rigid group”, Siberian Math. J., 59:2 (2018), 202–206
18. N. S. Romanovskii, “Generalized rigid groups: definitions, basic properties, and problems”, Siberian Math. J., 59:4 (2018), 705–709
19. Myasnikov A.G., Romanovskii N.S., “Characterization of Finitely Generated Groups By Types”, Int. J. Algebr. Comput., 28:8, SI (2018), 1613–1632
20. N. S. Romanovskii, “Generalized rigid metabelian groups”, Siberian Math. J., 60:1 (2019), 148–152
•  Number of views: This page: 330 Full text: 46 References: 34 First page: 3