RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2010, Volume 49, Number 1, Pages 3–17 (Mi al426)  

This article is cited in 2 scientific papers (total in 2 papers)

Undecidability of the theory of projective planes

N. T. Kogabaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: Elementary theories of projective planes are studied. The class of symmetric irreflexive graphs is proved to be relatively elementarily definable in the class of projective planes. Therefore, the theory of projective planes is hereditarily undecidable.

Keywords: projective plane, freely generated projective plane, undecidable theory.

Full text: PDF file (183 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2010, 49:1, 1–11

Bibliographic databases:

UDC: 510.53+514.146
Received: 10.02.2009

Citation: N. T. Kogabaev, “Undecidability of the theory of projective planes”, Algebra Logika, 49:1 (2010), 3–17; Algebra and Logic, 49:1 (2010), 1–11

Citation in format AMSBIB
\Bibitem{Kog10}
\by N.~T.~Kogabaev
\paper Undecidability of the theory of projective planes
\jour Algebra Logika
\yr 2010
\vol 49
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/al426}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2664120}
\zmath{https://zbmath.org/?q=an:1195.03043}
\elib{http://elibrary.ru/item.asp?id=13215749}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 1
\pages 1--11
\crossref{https://doi.org/10.1007/s10469-010-9075-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000276493500001}
\elib{http://elibrary.ru/item.asp?id=15313386}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949865349}


Linking options:
  • http://mi.mathnet.ru/eng/al426
  • http://mi.mathnet.ru/eng/al/v49/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. T. Kogabaev, “Freely generated projective planes with finite computable dimension”, Algebra and Logic, 55:6 (2017), 461–484  mathnet  crossref  crossref  isi
    2. Speranski S.O., “a Note on Hereditarily Pi(0)(1)- and SIGMA(0)(1)-Complete Sets of Sentences”, J. Logic Comput., 26:5 (2016), 1729–1741  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:315
    Full text:88
    References:43
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020