RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2010, Volume 49, Number 2, Pages 157–174 (Mi al433)  

Computable ideals in $I$-algebras

P. E. Alaevab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We give algebraic descriptions of relatively intrinsically computable ideals in $I$-algebras (Boolean algebras with a finite number of distinguished ideals) and of intrinsically computable ideals for the case of two distinguished ideals in the language of $I$-algebras.

Keywords: Boolean algebra with finite number of distinguished ideals, intrinsically computable ideal, relatively intrinsically computable ideal.

Full text: PDF file (236 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2010, 49:2, 103–114

Bibliographic databases:

UDC: 512.563+510.6+510.5
Received: 18.09.2008
Revised: 13.03.2009

Citation: P. E. Alaev, “Computable ideals in $I$-algebras”, Algebra Logika, 49:2 (2010), 157–174; Algebra and Logic, 49:2 (2010), 103–114

Citation in format AMSBIB
\Bibitem{Ala10}
\by P.~E.~Alaev
\paper Computable ideals in $I$-algebras
\jour Algebra Logika
\yr 2010
\vol 49
\issue 2
\pages 157--174
\mathnet{http://mi.mathnet.ru/al433}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2724802}
\zmath{https://zbmath.org/?q=an:1218.03028}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 2
\pages 103--114
\crossref{https://doi.org/10.1007/s10469-010-9082-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000278896100001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953917309}


Linking options:
  • http://mi.mathnet.ru/eng/al433
  • http://mi.mathnet.ru/eng/al/v49/i2/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:210
    Full text:76
    References:24
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020