RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2010, Volume 49, Number 2, Pages 195–215 (Mi al436)  

This article is cited in 20 scientific papers (total in 20 papers)

$\delta$-Superderivations of simple finite-dimensional Jordan and Lie superalgebras

I. B. Kaigorodovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: We introduce the concept of a $\delta$-superderivation of a superalgebra. $\delta$-Derivations of Cartan-type Lie superalgebras are treated, as well as $\delta$-superderivations of simple finite-dimensional Lie superalgebras and Jordan superalgebras over an algebraically closed field of characteristic 0. We give a complete description of $\frac12$-derivations for Cartan-type Lie superalgebras. It is proved that nontrivial $\delta$-(super)derivations are missing on the given classes of superalgebras, and as a consequence, $\delta$-superderivations are shown to be trivial on simple finite-dimensional noncommutative Jordan superalgebras of degree at least 2 over an algebraically closed field of characteristic 0. Also we consider $\delta$-derivations of unital flexible and semisimple finite-dimensional Jordan algebras over a field of characteristic not 2.

Keywords: $\delta$-superderivation, Cartan-type Lie superalgebra, simple finite-dimensional Lie superalgebra, Jordan superalgebra.

Full text: PDF file (251 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2010, 49:2, 130–144

Bibliographic databases:

UDC: 512.554
Received: 23.09.2009

Citation: I. B. Kaigorodov, “$\delta$-Superderivations of simple finite-dimensional Jordan and Lie superalgebras”, Algebra Logika, 49:2 (2010), 195–215; Algebra and Logic, 49:2 (2010), 130–144

Citation in format AMSBIB
\Bibitem{Kay10}
\by I.~B.~Kaigorodov
\paper $\delta$-Superderivations of simple finite-dimensional Jordan and Lie superalgebras
\jour Algebra Logika
\yr 2010
\vol 49
\issue 2
\pages 195--215
\mathnet{http://mi.mathnet.ru/al436}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2724805}
\zmath{https://zbmath.org/?q=an:1232.17028}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 2
\pages 130--144
\crossref{https://doi.org/10.1007/s10469-010-9085-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000278896100004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953913630}


Linking options:
  • http://mi.mathnet.ru/eng/al436
  • http://mi.mathnet.ru/eng/al/v49/i2/p195

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. B. Kaigorodov, “Ob obobschennom duble Kantora”, Vestn. SamGU. Estestvennonauchn. ser., 2010, no. 4(78), 42–50  mathnet
    2. V. N. Zhelyabin, I. B. Kaygorodov, “On $\delta$-superderivations of simple superalgebras of Jordan brackets”, St. Petersburg Math. J., 23:4 (2012), 665–677  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    3. I. B. Kaygorodov, “$(n+1)$-ary derivations of simple $n$-ary algebras”, Algebra and Logic, 50:5 (2011), 470–471  mathnet  crossref  mathscinet  zmath  isi
    4. I. Kaygorodov, “$\delta$-Superderivations of Semisimple Finite-Dimensional Jordan Superalgebras”, Math. Notes, 91:2 (2012), 187–197  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. A. I. Shestakov, “Ternary derivations of separable associative and Jordan algebras”, Siberian Math. J., 53:5 (2012), 943–956  mathnet  crossref  mathscinet  isi
    6. I. B. Kaygorodov, “On $\delta$-derivations of $n$-ary algebras”, Izv. Math., 76:6 (2012), 1150–1162  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. I. B. Kaygorodov, “$(n+1)$-ary derivations of simple $n$-ary Malcev algebras”, St. Petersburg Math. J., 25:4 (2014), 575–585  mathnet  crossref  mathscinet  zmath  isi  elib
    8. I. B. Kaigorodov, “Ob obobschennykh $\delta$-differentsirovaniyakh”, Vestn. SamGU. Estestvennonauchn. ser., 2013, no. 9/1(110), 12–21  mathnet  zmath  elib
    9. I. B. Kaygorodov, “$(n+1)$-ary Derivations of Semisimple Filippov algebras”, Math. Notes, 96:2 (2014), 208–216  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. Kaygorodov I. Okhapkina E., “Delta-Derivations of Semisimple Finite-Dimensional Structurable Algebras”, J. Algebra. Appl., 13:4 (2014), 1350130  crossref  mathscinet  zmath  isi  elib  scopus
    11. I. B. Kaygorodov, Yu. S. Popov, “Alternative algebras admitting derivations with invertible values and invertible derivations”, Izv. Math., 78:5 (2014), 922–936  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    12. A. I. Shestakov, “Ternary derivations of Jordan superalgebras”, Algebra and Logic, 53:4 (2014), 323–348  mathnet  crossref  mathscinet  isi
    13. A. Aboubakr, S. González, “Generalized reverse derivations on semiprime rings”, Siberian Math. J., 56:2 (2015), 199–205  mathnet  crossref  mathscinet  isi  elib  elib
    14. Kaygorodov I., Lopatin A., Popov Yu., “Conservative Algebras of 2-Dimensional Algebras”, Linear Alg. Appl., 486 (2015), 255–274  crossref  mathscinet  zmath  isi  elib  scopus
    15. Kaygorodov I. Popov Yu., “Generalized Derivations of (Color) N-Ary Algebras”, Linear Multilinear Algebra, 64:6 (2016), 1086–1106  crossref  mathscinet  zmath  isi  elib  scopus
    16. Kaygorodov I. Popov Yu., “a Characterization of Nilpotent Nonassociative Algebras By Invertible Leibniz-Derivations”, J. Algebra, 456 (2016), 323–347  crossref  mathscinet  zmath  isi  scopus
    17. Doosti A. Saeedi F. Tajnia S., “Some Properties of M-Isoclinism and Id-Derivations in Filippov Algebras”, Cogent Math., 4 (2017), 1309740  crossref  mathscinet  isi
    18. Kaygorodov I., Lopatin A., Popov Yu., “The Structure of Simple Noncommutative Jordan Superalgebras”, Mediterr. J. Math., 15:2 (2018), UNSP 33  crossref  mathscinet  isi
    19. Huang N., Chen L., Wang Ya., “Hom-Jordan Algebras and Their (K)-(a,B,C)-Derivations”, Commun. Algebr., 46:6 (2018), 2600–2614  crossref  mathscinet  zmath  isi  scopus
    20. Kaygorodov I., Lopatin A., Popov Yu., “Jordan Algebras Admitting Derivations With Invertible Values”, Commun. Algebr., 46:1 (2018), 69–81  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:379
    Full text:71
    References:62
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019