RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2010, Volume 49, Number 2, Pages 263–290 (Mi al439)  

This article is cited in 20 scientific papers (total in 20 papers)

Universal equivalence of partially commutative metabelian groups

E. I. Timoshenko

Novosibirsk State Technical University, Novosibirsk, Russia

Abstract: We state necessary and sufficient conditions for two partially commutative metabelian groups defined by trees to be universally equivalent.

Keywords: metabelian group, tree, universal equivalence.

Full text: PDF file (258 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2010, 49:2, 177–196

Bibliographic databases:

UDC: 512.5
Received: 14.04.2009
Revised: 23.11.2009

Citation: E. I. Timoshenko, “Universal equivalence of partially commutative metabelian groups”, Algebra Logika, 49:2 (2010), 263–290; Algebra and Logic, 49:2 (2010), 177–196

Citation in format AMSBIB
\Bibitem{Tim10}
\by E.~I.~Timoshenko
\paper Universal equivalence of partially commutative metabelian groups
\jour Algebra Logika
\yr 2010
\vol 49
\issue 2
\pages 263--290
\mathnet{http://mi.mathnet.ru/al439}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2724808}
\zmath{https://zbmath.org/?q=an:1220.20024}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 2
\pages 177--196
\crossref{https://doi.org/10.1007/s10469-010-9088-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000278896100007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953912861}


Linking options:
  • http://mi.mathnet.ru/eng/al439
  • http://mi.mathnet.ru/eng/al/v49/i2/p263

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ch. K. Gupta, E. I. Timoshenko, “Universal theories for partially commutative metabelian groups”, Algebra and Logic, 50:1 (2011), 1–16  mathnet  crossref  mathscinet  zmath  isi
    2. A. A. Mishchenko, E. I. Timoshenko, “Universal equivalence of partially commutative nilpotent groups”, Siberian Math. J., 52:5 (2011), 884–891  mathnet  crossref  mathscinet  isi
    3. E. N. Poroshenko, “Bases for partially commutative Lie algebras”, Algebra and Logic, 50:5 (2011), 405–417  mathnet  crossref  mathscinet  zmath  isi
    4. E. I. Timoshenko, “A Mal'tsev basis for a partially commutative nilpotent metabelian group”, Algebra and Logic, 50:5 (2011), 439–446  mathnet  crossref  mathscinet  zmath  isi
    5. E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. II. Foundations”, J. Math. Sci., 185:3 (2012), 389–416  mathnet  crossref
    6. Ch. K. Gupta, E. I. Timoshenko, “Properties and universal theories for partially commutative nilpotent metabelian groups”, Algebra and Logic, 51:4 (2012), 285–305  mathnet  crossref  mathscinet  zmath  isi
    7. E. N. Poroshenko, “Centralizers in partially commutative Lie algebras”, Algebra and Logic, 51:4 (2012), 351–371  mathnet  crossref  mathscinet  zmath  isi
    8. Poroshenko E.N. Timoshenko E.I., “Universal Equivalence of Partially Commutative Metabelian Lie Algebras”, J. Algebra, 384 (2013), 143–168  crossref  mathscinet  zmath  isi  elib  scopus
    9. A. A. Mishchenko, A. V. Treier, “Algorithmic decidability of the universal equivalence problem for partially commutative nilpotent groups”, Algebra and Logic, 52:2 (2013), 147–158  mathnet  crossref  mathscinet  isi
    10. E. I. Timoshenko, “Quasivarieties generated by partially commutative groups”, Siberian Math. J., 54:4 (2013), 722–730  mathnet  crossref  mathscinet  isi
    11. E. I. Timoshenko, “On a Presentation of the Automorphism Group of a Partially Commutative Metabelian Group”, Math. Notes, 97:2 (2015), 275–283  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. Poroshenko E.N., “on Universal Equivalence of Partially Commutative Metabelian Lie Algebras”, Commun. Algebr., 43:2 (2015), 746–762  crossref  mathscinet  zmath  isi  elib  scopus
    13. E. N. Poroshenko, “Universal equivalence of partially commutative Lie algebras”, Algebra and Logic, 56:2 (2017), 133–148  mathnet  crossref  crossref  isi
    14. E. I. Timoshenko, “Centralizer dimensions and universal theories for partially commutative metabelian groups”, Algebra and Logic, 56:2 (2017), 149–170  mathnet  crossref  crossref  isi
    15. E. N. Poroshenko, “Elementary equivalence of partially commutative Lie rings and algebras”, Algebra and Logic, 56:4 (2017), 348–352  mathnet  crossref  crossref  mathscinet  isi
    16. E. N. Poroshenko, “Universal equivalence of some countably generated partially commutative structures”, Siberian Math. J., 58:2 (2017), 296–304  mathnet  crossref  crossref  isi  elib  elib
    17. V. Ya. Bloshchitsyn, E. I. Timoshenko, “Comparison between the universal theories of partially commutative metabelian groups”, Siberian Math. J., 58:3 (2017), 382–391  mathnet  crossref  crossref  isi  elib  elib
    18. Timoshenko E., “On Embedding of Partially Commutative Metabelian Groups to Matrix Groups”, Int. J. Group Theory, 7:4 (2018), 17–26  crossref  mathscinet  isi  scopus
    19. E. I. Timoshenko, “Centralizer dimensions of partially commutative metabelian groups”, Algebra and Logic, 57:1 (2018), 69–80  mathnet  crossref  crossref  isi
    20. E. I. Timoshenko, “On splittings, subgroups, and theories of partially commutative metabelian groups”, Siberian Math. J., 59:3 (2018), 536–541  mathnet  crossref  crossref  isi  elib
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:232
    Full text:58
    References:47
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019