Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2010, Volume 49, Number 3, Pages 379–387 (Mi al445)  

This article is cited in 7 scientific papers (total in 7 papers)

Periodic groups acting freely on Abelian groups

D. V. Lytkina

Novosibirsk State University, Novosibirsk, Russia

Abstract: We describe $\{2,3\}$-groups without elements of order 27, acting freely on an Abelian group. In particular, it is proved that such groups are locally finite.

Keywords: periodic group, Abelian group, local finiteness.

Full text: PDF file (155 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2010, 49:3, 256–261

Bibliographic databases:

UDC: 512.5
Received: 07.10.2009

Citation: D. V. Lytkina, “Periodic groups acting freely on Abelian groups”, Algebra Logika, 49:3 (2010), 379–387; Algebra and Logic, 49:3 (2010), 256–261

Citation in format AMSBIB
\Bibitem{Lyt10}
\by D.~V.~Lytkina
\paper Periodic groups acting freely on Abelian groups
\jour Algebra Logika
\yr 2010
\vol 49
\issue 3
\pages 379--387
\mathnet{http://mi.mathnet.ru/al445}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2766395}
\zmath{https://zbmath.org/?q=an:1216.20026}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 3
\pages 256--261
\crossref{https://doi.org/10.1007/s10469-010-9094-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955658257}


Linking options:
  • http://mi.mathnet.ru/eng/al445
  • http://mi.mathnet.ru/eng/al/v49/i3/p379

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Lytkina D.V., Mazurov V.D., “Nekotorye otkrytye voprosy teorii grupp”, Matematicheskii forum (itogi nauki. yug Rossii), 6 (2012), 98–104  elib
    2. A. I. Sozutov, “On the Shunkov groups acting freely on abelian groups”, Siberian Math. J., 54:1 (2013), 144–151  mathnet  crossref  mathscinet  isi
    3. A. Kh. Zhurtov, D. V. Lytkina, V. D. Mazurov, A. I. Sozutov, “On periodic groups acting freely on abelian groups”, Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S209–S215  mathnet  crossref  mathscinet  isi  elib
    4. Daria V. Lytkina, Victor D. Mazurov, “Groups with given element orders”, Zhurn. SFU. Ser. Matem. i fiz., 7:2 (2014), 191–203  mathnet
    5. D. V. Lytkina, V. D. Mazurov, “On $\{2,3\}$-groups without elements of order 6”, Siberian Math. J., 55:6 (2014), 1098–1104  mathnet  crossref  mathscinet  isi
    6. D. V. Lytkina, V. D. Mazurov, “$\{2,3\}$-groups with no elements of order 6”, Algebra and Logic, 53:6 (2015), 463–470  mathnet  crossref  mathscinet  isi
    7. Bettio E., “Groups of Finite Exponent Acting Regulary on An Abelian Group”, Arch. Math., 106:3 (2016), 219–223  crossref  mathscinet  zmath  isi  elib  scopus
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:236
    Full text:71
    References:49
    First page:8

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021