RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2010, Volume 49, Number 4, Pages 433–450 (Mi al448)  

This article is cited in 6 scientific papers (total in 6 papers)

$S$-embedded subgroups of finite groups

Wenbin Guoab, Yi Lub, Wenjuan Niub

a Dep. Math., Univ. of Science and Technology of China, Hefei
b Dep. Math., Xuzhou Normal Univ., Xuzhou

Abstract: A subgroup $H$ of $G$ is said to be $S$-embedded in $G$ if $G$ has a normal subgroup $N$ such that $HN$ is $s$-permutable in $G$ and $H\cap N\le H_{sG}$, where $H_{sG}$ is the largest $s$-permutable subgroup of $G$ contained in $H$. $S$-embedded subgroups are used to give novel characterizations for some classes of groups. New results are obtained and a number of previously known ones are generalized.

Keywords: finite group, permutable group, $S$-embedded subgroup, supersoluble group, $p$-nilpotent group.

Full text: PDF file (192 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2010, 49:4, 293–304

Bibliographic databases:

UDC: 512.542
Received: 08.09.2009

Citation: Wenbin Guo, Yi Lu, Wenjuan Niu, “$S$-embedded subgroups of finite groups”, Algebra Logika, 49:4 (2010), 433–450; Algebra and Logic, 49:4 (2010), 293–304

Citation in format AMSBIB
\Bibitem{GuoLuWen10}
\by Wenbin~Guo, Yi~Lu, Wenjuan~Niu
\paper $S$-embedded subgroups of finite groups
\jour Algebra Logika
\yr 2010
\vol 49
\issue 4
\pages 433--450
\mathnet{http://mi.mathnet.ru/al448}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2790171}
\zmath{https://zbmath.org/?q=an:1255.20021}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 4
\pages 293--304
\crossref{https://doi.org/10.1007/s10469-010-9097-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288429000001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78149412241}


Linking options:
  • http://mi.mathnet.ru/eng/al448
  • http://mi.mathnet.ru/eng/al/v49/i4/p433

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Malinowska I.A., “Finite Groups with Nr-Subgroups Or their Generalizations”, J. Group Theory, 15:5 (2012), 687–707  crossref  mathscinet  zmath  isi  elib  scopus
    2. Malinowska I.A., “Finite Groups with Sn-Embedded Or S-Embedded Subgroups”, Acta Math. Hung., 136:1-2 (2012), 76–89  crossref  mathscinet  zmath  isi  elib  scopus
    3. X. Chen, W. Guo, “On weakly $\mathrm S$-embedded and weakly $\tau$-embedded subgroups”, Siberian Math. J., 54:5 (2013), 931–945  mathnet  crossref  mathscinet  isi
    4. Huo L., Guo W., Makhnev A.A., “on Nearly Ss-Embedded Subgroups of Finite Groups”, Chin. Ann. Math. Ser. B, 35:6 (2014), 885–894  crossref  mathscinet  zmath  isi  elib  scopus
    5. Mao Yu., Mahboob A., Guo W., “S-Semiembedded Subgroups of Finite Groups”, Front. Math. China, 10:6 (2015), 1401–1413  crossref  mathscinet  zmath  isi  elib  scopus
    6. Li J., Shi W., Yu D., “the Influence of S-Embedded Subgroups on the Structure of Finite Groups”, Bull. Iran Math. Soc., 41:1 (2015), 87–100  mathscinet  zmath  isi  elib
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:241
    Full text:53
    References:56
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019