RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2010, Volume 49, Number 4, Pages 498–519 (Mi al451)  

A semilattice of numberings. II

V. G. Puzarenko

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Abstract: $\mathfrak c$-Universal semilattices $\mathfrak A$ of the power of the continuum (of an upper semilattice of $m$-degrees ) on admissible sets are studied. Moreover, it is shown that a semilattice of $\mathbb{HF}(\mathfrak M)$-numberings of a finite set is $\mathfrak c$-universal if $\mathfrak M$ is a countable model of a $\mathfrak c$-simple theory.

Keywords: computably enumerable set, admissible set, $\mathbb A$-numbering, $m\Sigma$-reducibility, hereditarily finite superstructure, natural ordinal, upper semilattice, $\mathfrak c$-universal semilattice.

Full text: PDF file (269 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2010, 49:4, 340–353

Bibliographic databases:

Document Type: Article
UDC: 510.5
Received: 06.03.2009
Revised: 09.03.2010

Citation: V. G. Puzarenko, “A semilattice of numberings. II”, Algebra Logika, 49:4 (2010), 498–519; Algebra and Logic, 49:4 (2010), 340–353

Citation in format AMSBIB
\Bibitem{Puz10}
\by V.~G.~Puzarenko
\paper A semilattice of numberings.~II
\jour Algebra Logika
\yr 2010
\vol 49
\issue 4
\pages 498--519
\mathnet{http://mi.mathnet.ru/al451}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2790174}
\zmath{https://zbmath.org/?q=an:1262.03074}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 4
\pages 340--353
\crossref{https://doi.org/10.1007/s10469-010-9100-y}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288429000004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78149414078}


Linking options:
  • http://mi.mathnet.ru/eng/al451
  • http://mi.mathnet.ru/eng/al/v49/i4/p498

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:158
    Full text:33
    References:23
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019