RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2010, Volume 49, Number 4, Pages 555–565 (Mi al453)  

This article is cited in 5 scientific papers (total in 5 papers)

Base fields of $\mathrm{csp}$-rings

E. A. Timoshenko


Abstract: We study into the question of which fields may serve as base fields for $\mathrm{csp}$-rings. It is proved that every algebraic extension of a field $\mathbf Q$ is the base field of some $\mathrm{csp}$-ring. Also it shown that in studying base fields, we may confine ourselves to treating only $\mathrm{csp}$-rings of idempotent cocharacteristic, or only regular $\mathrm{csp}$-rings.

Keywords: $\mathrm{csp}$-ring, base field.

Full text: PDF file (174 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2010, 49:4, 378–385

Bibliographic databases:

UDC: 512.62
Received: 07.03.2009
Revised: 26.02.2010

Citation: E. A. Timoshenko, “Base fields of $\mathrm{csp}$-rings”, Algebra Logika, 49:4 (2010), 555–565; Algebra and Logic, 49:4 (2010), 378–385

Citation in format AMSBIB
\Bibitem{Tim10}
\by E.~A.~Timoshenko
\paper Base fields of $\mathrm{csp}$-rings
\jour Algebra Logika
\yr 2010
\vol 49
\issue 4
\pages 555--565
\mathnet{http://mi.mathnet.ru/al453}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2790176}
\zmath{https://zbmath.org/?q=an:06115000}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 4
\pages 378--385
\crossref{https://doi.org/10.1007/s10469-010-9102-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288429000006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78149406166}


Linking options:
  • http://mi.mathnet.ru/eng/al453
  • http://mi.mathnet.ru/eng/al/v49/i4/p555

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. E. A. Timoshenko, “Chisto transtsendentnye rasshireniya polya ratsionalnykh chisel kak bazovye polya csp-kolets”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2013, no. 5(25), 30–39  mathnet
    2. O. Guseva, A. V. Tsarev, “Rings whose $p$-ranks do not exceed 1”, Sb. Math., 205:4 (2014), 476–487  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. E. A. Timoshenko, “Base fields of $\mathrm{csp}$-rings. II”, J. Math. Sci., 230:3 (2018), 451–456  mathnet  crossref  mathscinet
    4. E. A. Timoshenko, “Gruppa Grotendika $K_0$ proizvolnogo csp-koltsa”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2018, no. 55, 38–44  mathnet  crossref  elib
    5. P. A. Krylov, A. A. Tuganbaev, A. V. Tsarev, “sp-Gruppy i ikh koltsa endomorfizmov”, Algebra, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 159, VINITI RAN, M., 2019, 68–110  mathnet
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:198
    Full text:44
    References:43
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019