RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2010, Volume 49, Number 6, Pages 757–765 (Mi al465)  

Toward a theorem of Douady

Yu. L. Ershovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia

Abstract: A theorem of Douady says that the absolute Galois group of a rational function field $F(x)$ in one variable over an algebraically closed field $F$ of characteristic 0 is a free profinite group. A new method is proposed to extend Douady's theorem from the case of the complex number field $F=\mathbb C$ to the case of an arbitrary field.

Keywords: absolute Galois group, profinite group, field.

Full text: PDF file (151 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2010, 49:6, 509–514

Bibliographic databases:

UDC: 512.623.4
Received: 10.11.2010

Citation: Yu. L. Ershov, “Toward a theorem of Douady”, Algebra Logika, 49:6 (2010), 757–765; Algebra and Logic, 49:6 (2010), 509–514

Citation in format AMSBIB
\Bibitem{Ers10}
\by Yu.~L.~Ershov
\paper Toward a~theorem of Douady
\jour Algebra Logika
\yr 2010
\vol 49
\issue 6
\pages 757--765
\mathnet{http://mi.mathnet.ru/al465}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2828873}
\transl
\jour Algebra and Logic
\yr 2010
\vol 49
\issue 6
\pages 509--514
\crossref{https://doi.org/10.1007/s10469-011-9113-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000288430700002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952249983}


Linking options:
  • http://mi.mathnet.ru/eng/al465
  • http://mi.mathnet.ru/eng/al/v49/i6/p757

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:244
    Full text:66
    References:40
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020