|
This article is cited in 9 scientific papers (total in 9 papers)
Some presentations of the real number field
A. S. Morozovab a Novosibirsk State University, Novosibirsk, Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Abstract:
It is proved that every two $\Sigma$-presentations of an ordered field $\mathbb R$ of reals
over $\mathbb{HF(R)}$, whose universes are subsets of $\mathbb R$, are mutually $\Sigma$-isomorphic. As
a consequence, for a series of functions $f\colon\mathbb R\to\mathbb R$ (e.g., $\exp$, $\sin$, $\cos$, $\ln$), it is stated that the structure $\mathbb R=\langle R,+,\times,<,0,1,f\rangle$ lacks such $\Sigma$-presentations
over $\mathbb{HF(R)}$.
Keywords:
$\Sigma$-presentation, ordered field of reals.
Full text:
PDF file (302 kB)
References:
PDF file
HTML file
English version:
Algebra and Logic, 2012, 51:1, 66–88
Bibliographic databases:
UDC:
510.6+510.5 Received: 26.03.2011 Revised: 08.11.2011
Citation:
A. S. Morozov, “Some presentations of the real number field”, Algebra Logika, 51:1 (2012), 96–128; Algebra and Logic, 51:1 (2012), 66–88
Citation in format AMSBIB
\Bibitem{Mor12}
\by A.~S.~Morozov
\paper Some presentations of the real number field
\jour Algebra Logika
\yr 2012
\vol 51
\issue 1
\pages 96--128
\mathnet{http://mi.mathnet.ru/al524}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2986466}
\zmath{https://zbmath.org/?q=an:06115024}
\transl
\jour Algebra and Logic
\yr 2012
\vol 51
\issue 1
\pages 66--88
\crossref{https://doi.org/10.1007/s10469-012-9171-z}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000304163300005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84861898922}
Linking options:
http://mi.mathnet.ru/eng/al524 http://mi.mathnet.ru/eng/al/v51/i1/p96
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Cycle of papers
This publication is cited in the following articles:
-
A. S. Morozov, “Nonpresentability of the semigroup $\omega^\omega$ over $\mathbb{HF(R)}$”, Siberian Math. J., 55:1 (2014), 125–131
-
S. A. Aleksandrova, “The uniformization problem for $\Sigma$-predicates in a hereditarily finite list superstructure over the real exponential field”, Algebra and Logic, 53:1 (2014), 1–8
-
A. S. Morozov, “On $\Sigma$-rigid presentations of the real order”, Siberian Math. J., 55:3 (2014), 457–464
-
A. S. Morozov, “$\Sigma$-presentations of the ordering on the reals”, Algebra and Logic, 53:3 (2014), 217–237
-
A. S. Morozov, “A sufficient condition for nonpresentability of structures in hereditarily finite superstructures”, Algebra and Logic, 55:3 (2016), 242–251
-
A. S. Morozov, “Computable model theory over the reals”, Computability and Complexity: Essays Dedicated to Rodney G. Downey on the Occasion of His 60Th Birthday, Lecture Notes in Computer Science, 10010, ed. A. Day, M. Fellows, N. Greenberg, B. Khoussainov, A. Melnikov, F. Rosamond, Springler, 2017, 354–365
-
A. S. Morozov, “Nonpresentability of some structures of analysis in hereditarily finite superstructures”, Algebra and Logic, 56:6 (2018), 458–472
-
S. A. Aleksandrova, “O $\Sigma$-opredelimosti nasledstvenno konechnoi i spisochnoi nadstroek”, Sib. zhurn. chist. i prikl. matem., 18:1 (2018), 3–10
-
Greenberg N., Melnikov A.G., Knight J.F., Turetsky D., “Uniform Procedures in Uncountable Structures”, J. Symb. Log., 83:2 (2018), 529–550
|
Number of views: |
This page: | 306 | Full text: | 81 | References: | 59 | First page: | 26 |
|