RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2012, Volume 51, Number 3, Pages 297–320 (Mi al536)  

This article is cited in 5 scientific papers (total in 5 papers)

Ideal representations of Reed–Solomon and Reed–Muller codes

E. Couseloa, S. Gonzáleza, V. T. Markovb, C. Martíneza, A. A. Nechaevc

a University of Oviedo, Oviedo, Spain
b Moscow State University, Moscow, Russia
c Moscow State University, Moscow, Russia

Abstract: Reed–Solomon codes and Reed–Muller codes are represented as ideals of the group ring $S=QH$ of an elementary Abelian $p$-group $H$ over a finite field $Q=\mathbb F_q$ of characteristic $p$. Such representations of these codes are already known. Our technique differs from the previously used method in the following. There, the codes in question are represented as kernels of some homomorphisms; in other words, the codes are defined by some kind of parity check relation. Here, we explicitly specify generators for the ideals presenting the codes. In this case Reed–Muller codes are obtained by applying the trace function to some sums of one-dimensional subspaces of $_QS$ in a fixed set of $q$ such subspaces, whose sums also present Reed–Solomon codes.

Keywords: Reed–Muller codes, Reed–Solomon codes, group ring, elementary Abelian $p$-group.

Full text: PDF file (250 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2012, 51:3, 195–212

Bibliographic databases:

UDC: 519.725+512.552.7
Received: 01.02.2012
Revised: 18.04.2012

Citation: E. Couselo, S. González, V. T. Markov, C. Martínez, A. A. Nechaev, “Ideal representations of Reed–Solomon and Reed–Muller codes”, Algebra Logika, 51:3 (2012), 297–320; Algebra and Logic, 51:3 (2012), 195–212

Citation in format AMSBIB
\Bibitem{CouGonMar12}
\by E.~Couselo, S.~Gonz\'alez, V.~T.~Markov, C.~Mart{\'\i}nez, A.~A.~Nechaev
\paper Ideal representations of Reed--Solomon and Reed--Muller codes
\jour Algebra Logika
\yr 2012
\vol 51
\issue 3
\pages 297--320
\mathnet{http://mi.mathnet.ru/al536}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3013906}
\zmath{https://zbmath.org/?q=an:06121536}
\transl
\jour Algebra and Logic
\yr 2012
\vol 51
\issue 3
\pages 195--212
\crossref{https://doi.org/10.1007/s10469-012-9183-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309471100001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866148448}


Linking options:
  • http://mi.mathnet.ru/eng/al536
  • http://mi.mathnet.ru/eng/al/v51/i3/p297

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. N. Tumaykin, “Basic Reed–Muller codes as group codes”, J. Math. Sci., 206:6 (2015), 699–710  mathnet  crossref  mathscinet
    2. I. N. Tumaikin, “Basic Reed–Muller codes and their connections with powers of radical of group algebra over a non-prime field”, Moscow University Mathematics Bulletin, 68:6 (2013), 295–298  mathnet  crossref  mathscinet
    3. I. N. Tumaykin, “Group ring ideals related to Reed–Muller codes”, J. Math. Sci., 233:5 (2018), 745–748  mathnet  crossref
    4. K. V. Vedenev, V. M. Deundyak, “The structure of finite group algebra of a semidirect product of abelian groups and its applications”, Chebyshevskii sb., 20:3 (2019), 107–123  mathnet  crossref
    5. K. V. Vedenev, V. M. Deundyak, “Relationship between Codes and Idempotents in a Dihedral Group Algebra”, Math. Notes, 107:2 (2020), 201–216  mathnet  crossref  crossref  isi  elib
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:409
    Full text:105
    References:46
    First page:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020