|
This article is cited in 5 scientific papers (total in 5 papers)
Universal theories for free solvable groups
N. S. Romanovskiiab a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Abstract:
It is proved that a free solvable group of derived length at least 4 has an algorithmically undecidable universal theory.
Keywords:
universal theory, decidable theory, free solvable group.
Full text:
PDF file (133 kB)
References:
PDF file
HTML file
English version:
Algebra and Logic, 2012, 51:3, 259–263
Bibliographic databases:
UDC:
512.54.05 Received: 07.02.2012
Citation:
N. S. Romanovskii, “Universal theories for free solvable groups”, Algebra Logika, 51:3 (2012), 385–391; Algebra and Logic, 51:3 (2012), 259–263
Citation in format AMSBIB
\Bibitem{Rom12}
\by N.~S.~Romanovskii
\paper Universal theories for free solvable groups
\jour Algebra Logika
\yr 2012
\vol 51
\issue 3
\pages 385--391
\mathnet{http://mi.mathnet.ru/al541}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3013911}
\zmath{https://zbmath.org/?q=an:1267.20052}
\transl
\jour Algebra and Logic
\yr 2012
\vol 51
\issue 3
\pages 259--263
\crossref{https://doi.org/10.1007/s10469-012-9188-3}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000309471100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84866149637}
Linking options:
http://mi.mathnet.ru/eng/al541 http://mi.mathnet.ru/eng/al/v51/i3/p385
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. G. Myasnikov, N. S. Romanovskii, “Logical aspects of the theory of divisible rigid groups”, Dokl. Math., 90:3 (2014), 697–698
-
E. I. Timoshenko, “Universal theory of a free polynilpotent group”, Izv. Math., 80:3 (2016), 623–632
-
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. VI. Geometric equivalence”, Algebra and Logic, 56:4 (2017), 281–294
-
E. I. Timoshenko, “Theories of relatively free solvable groups with extra predicate”, Algebra and Logic, 57:4 (2018), 295–308
-
N. S. Romanovskii, “Ob universalnykh teoriyakh metabelevykh obobschenno zhestkikh grupp”, Sib. matem. zhurn., 61:5 (2020), 1101–1107
|
Number of views: |
This page: | 194 | Full text: | 51 | References: | 48 | First page: | 12 |
|