Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2004, Volume 43, Number 1, Pages 3–31 (Mi al55)  

This article is cited in 3 scientific papers (total in 3 papers)

A Weaker Version of Congruence-Permutability for Semigroup Varieties

B. M. Vernikov

Ural State University

Abstract: Congruences $\alpha$ and $\beta$ are 2.5-permutable if $\alpha\vee\beta=\alpha\beta\cup\beta\alpha$, where $\vee$ is a union in the congruence lattice and $\cup$ is the set-theoretic union. A semigroup variety $\mathcal V$ is $fi$-permutable ($fi$-2.5-permutable) if every two fully invariant congruences are permutable (2.5-permutable) on all $\mathcal V$-free semigroups. Previously, a description has been furnished for $fi$-permutable semigroup varieties. Here, it is proved that a semigroup variety is $fi$-2.5-permutable iff it either consists of completely simple semigroups, or coincides with a variety of all semilattices, or is contained in one of the explicitly specified nil-semigroup varieties. As a consequence we see that (a) for semigroup varieties that are not nil-varieties, the property of being $fi$-2.5-permutable is equivalent to being $fi$-permutable; (b) for a nil-variety $\mathcal V$, if the lattice $L(\mathcal V)$ of its subvarieties is distributive then is $fi$-2.5-permutable; (c) if $\mathcal V$ is combinatorial or is not completely simple then the fact that $\mathcal V$ is $fi$-2.5-permutable implies that $L(\mathcal V)$ belongs to a variety generated by a 5-element modular non-distributive lattice.

Keywords: variety, semilattice, nil-semigroup, congruence-permutability.

Full text: PDF file (296 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2004, 43:1, 1–16

Bibliographic databases:

UDC: 512.532.2
Received: 18.02.2002

Citation: B. M. Vernikov, “A Weaker Version of Congruence-Permutability for Semigroup Varieties”, Algebra Logika, 43:1 (2004), 3–31; Algebra and Logic, 43:1 (2004), 1–16

Citation in format AMSBIB
\Bibitem{Ver04}
\by B.~M.~Vernikov
\paper A Weaker Version of Congruence-Permutability for Semigroup Varieties
\jour Algebra Logika
\yr 2004
\vol 43
\issue 1
\pages 3--31
\mathnet{http://mi.mathnet.ru/al55}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2073443}
\zmath{https://zbmath.org/?q=an:1115.20048}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 1
\pages 1--16
\crossref{https://doi.org/10.1023/B:ALLO.0000015127.50736.36}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42349103042}


Linking options:
  • http://mi.mathnet.ru/eng/al55
  • http://mi.mathnet.ru/eng/al/v43/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vernikov BM, “Semigroup varieties with 1.5-permutable fully invariant congruences on their free objects”, Acta Applicandae Mathematicae, 85:1–3 (2005), 313–318  crossref  mathscinet  zmath  isi  elib  scopus
    2. L. N. Shevrin, B. M. Vernikov, M. V. Volkov, “Lattices of semigroup varieties”, Russian Math. (Iz. VUZ), 53:3 (2009), 1–28  mathnet  crossref  mathscinet  zmath  elib
    3. B. M. Vernikov, V. Yu. Shaprynskii, “Tri oslablennykh varianta kongruents-perestanovochnosti dlya mnogoobrazii polugrupp”, Sib. elektron. matem. izv., 11 (2014), 567–604  mathnet
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:247
    Full text:76
    References:53
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022