Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2013, Volume 52, Number 1, Pages 99–108 (Mi al575)  

This article is cited in 6 scientific papers (total in 6 papers)

Rank and order of a finite group admitting a Frobenius group of automorphisms

E. I. Khukhro

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia

Abstract: Suppose that a finite group $G$ admits a Frobenius group $FH$ of automorphisms of coprime order with kernel $F$ and complement $H$. For the case where $G$ is a finite $p$-group such that $G=[G,F]$, it is proved that the order of $G$ is bounded above in terms of the order of $H$ and the order of the fixed-point subgroup $C_G(H)$ of the complement, while the rank of $G$ is bounded above in terms of $|H|$ and the rank of $C_G(H)$. Earlier, such results were known under the stronger assumption that the kernel $F$ acts on $G$ fixed-point-freely. As a corollary, for the case where $G$ is an arbitrary finite group with a Frobenius group $FH$ of automorphisms of coprime order with kernel $F$ and complement $H$, estimates are obtained which are of the form $|G|\le|C_G(F)|\cdot f(|H|,|C_G(H)|)$ for the order, and of the form $\mathbf r(G)\le\mathbf r(C_G(F))+g(|H|,\mathbf r(C_G(H)))$ for the rank, where $f$ and $g$ are some functions of two variables.

Keywords: finite group, Frobenius group, automorphism, rank, order, $p$-group.

Full text: PDF file (168 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2013, 52:1, 72–78

Bibliographic databases:

UDC: 512.542
Received: 22.08.2012

Citation: E. I. Khukhro, “Rank and order of a finite group admitting a Frobenius group of automorphisms”, Algebra Logika, 52:1 (2013), 99–108; Algebra and Logic, 52:1 (2013), 72–78

Citation in format AMSBIB
\Bibitem{Khu13}
\by E.~I.~Khukhro
\paper Rank and order of a~finite group admitting a~Frobenius group of automorphisms
\jour Algebra Logika
\yr 2013
\vol 52
\issue 1
\pages 99--108
\mathnet{http://mi.mathnet.ru/al575}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3113801}
\zmath{https://zbmath.org/?q=an:06189477}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 1
\pages 72--78
\crossref{https://doi.org/10.1007/s10469-013-9221-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000319133000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877085218}


Linking options:
  • http://mi.mathnet.ru/eng/al575
  • http://mi.mathnet.ru/eng/al/v52/i1/p99

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. İ. Güloğlu, G. Ercan, “Action of a Frobenius-like group”, J. Algebra, 402 (2014), 533–543  crossref  mathscinet  zmath  isi  elib  scopus
    2. G. Ercan, İ. Güloğlu, E. I. Khukhro, “Rank and order of a finite group admitting a Frobenius-like group of automorphisms”, Algebra and Logic, 53:3 (2014), 258–265  mathnet  crossref  mathscinet  isi
    3. G. Ercan, İ. Güloğlu, E. I. Khukhro, “Derived length of a Frobenius-like kernel”, J. Algebra, 412 (2014), 179–188  crossref  mathscinet  zmath  isi  elib  scopus
    4. G. Ercan, İ. Güloğlu, E. I. Khukhro, “Frobenius-like groups as groups of automorphisms”, Turk. J. Math., 38:6 (2014), 965–976  crossref  mathscinet  zmath  isi  elib  scopus
    5. E. I. Khukhro, N. Yu. Makarenko, “Finite $p$-groups with a Frobenius group of automorphisms whose kernel is a cyclic $p$-group”, Proc. Amer. Math. Soc., 143:5 (2015), PII S0002-9939(2015)12287-3, 1837–1848  crossref  mathscinet  zmath  isi  elib  scopus
    6. Gülin Ercan, İsmail Ş. Güloğlu, “Finite groups admitting a dihedral group of automorphisms”, Algebra Discrete Math., 23:2 (2017), 223–229  mathnet
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:302
    Full text:84
    References:45
    First page:24

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021