RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2013, Volume 52, Number 2, Pages 131–144 (Mi al578)  

This article is cited in 1 scientific paper (total in 1 paper)

Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism

N. A. Bazhenova, R. R. Tukhbatullinab

a Novosibirsk State University, Novosibirsk, Russia
b CERGE–EI, a joint workplace of Charles Univ. and Economics Inst. Acad. Sci. Czech Repub., Politických vězňů, 7, 11121 Prague, Czech Republic

Abstract: It is proved that every computably enumerable Turing degree is a degree of categoricity of some computable Boolean algebra with a distinguished automorphism. We construct an example of a computably categorical Boolean algebra with a distinguished automorphism, having a set of atoms in a given computably enumerable Turing degree.

Keywords: Boolean algebra with distinguished automorphism, computable categoricity, categoricity spectrum, degree of categoricity.

Full text: PDF file (207 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2013, 52:2, 89–97

Bibliographic databases:

UDC: 512.563+510.5+510.6
Received: 24.07.2012

Citation: N. A. Bazhenov, R. R. Tukhbatullina, “Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism”, Algebra Logika, 52:2 (2013), 131–144; Algebra and Logic, 52:2 (2013), 89–97

Citation in format AMSBIB
\Bibitem{BazTuk13}
\by N.~A.~Bazhenov, R.~R.~Tukhbatullina
\paper Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a~distinguished automorphism
\jour Algebra Logika
\yr 2013
\vol 52
\issue 2
\pages 131--144
\mathnet{http://mi.mathnet.ru/al578}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3134779}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 2
\pages 89--97
\crossref{https://doi.org/10.1007/s10469-013-9224-y}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000321627100001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884953653}


Linking options:
  • http://mi.mathnet.ru/eng/al578
  • http://mi.mathnet.ru/eng/al/v52/i2/p131

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. A. Bazhenov, “Bulevy algebry s vydelennymi endomorfizmami i porozhdayuschie derevya”, Vestn. NGU. Ser. matem., mekh., inform., 15:1 (2015), 29–44  mathnet; N. A. Bazhenov, “Boolean algebras with distinguished endomorphisms and generating trees”, J. Math. Sci., 215:4 (2016), 460–474  crossref
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:139
    Full text:13
    References:27
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017