RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2013, Volume 52, Number 2, Pages 155–171 (Mi al580)  

This article is cited in 1 scientific paper (total in 1 paper)

Topologizability of countable equationally Noetherian algebras

M. V. Kotov

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Omsk, Russia

Abstract: It is proved that an arbitrary equationally Noetherian countable algebra $\mathcal A=\langle A,L_A\rangle$ in a countable language is topologizable. In addition, it is shown that certain of the known statements on topologizability follow as a consequence.

Keywords: equationally Noetherian algebra, topologizable algebra.

Full text: PDF file (222 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2013, 52:2, 105–115

Bibliographic databases:

UDC: 512.57+515.2
Received: 05.03.2012
Revised: 28.01.2013

Citation: M. V. Kotov, “Topologizability of countable equationally Noetherian algebras”, Algebra Logika, 52:2 (2013), 155–171; Algebra and Logic, 52:2 (2013), 105–115

Citation in format AMSBIB
\Bibitem{Kot13}
\by M.~V.~Kotov
\paper Topologizability of countable equationally Noetherian algebras
\jour Algebra Logika
\yr 2013
\vol 52
\issue 2
\pages 155--171
\mathnet{http://mi.mathnet.ru/al580}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3134781}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 2
\pages 105--115
\crossref{https://doi.org/10.1007/s10469-013-9226-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000321627100003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884976390}


Linking options:
  • http://mi.mathnet.ru/eng/al580
  • http://mi.mathnet.ru/eng/al/v52/i2/p155

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. J. Dutka, A. Ivanov, “Topologizable structures and Zariski topology”, Algebr. Universalis, 79:3 (2018), UNSP 72  crossref  mathscinet  isi  scopus
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:161
    Full text:45
    References:29
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020