Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2013, Volume 52, Number 5, Pages 582–588 (Mi al604)  

This article is cited in 1 scientific paper (total in 1 paper)

Groups acting on groups

M. Deaconescua, G. L. Wallsb

a Dep. Math., Kuwait Univ., P. O. Box 5969, Safat 13060, Kuwait
b Dep. Math., Southeastern Louisiana Univ., Hammond, LA 70403, USA

Abstract: Combinatorial methods are used to give a characterization of finite groups $G$ with $\mathrm{Aut}(G)$ Abelian and to show that if $G$ is a finite group and $\alpha$ is an automorphism of $G$, then the number of fixed points of $\alpha$ in $G$ is a multiple of the number of fixed points of $\alpha$ in $G/Z(G)$.

Keywords: finite groups, automorphisms, fixed points, orbits, Abelian automorphism groups.

Full text: PDF file (124 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2013, 52:5, 387–391

Bibliographic databases:

UDC: 512.542
Received: 21.07.2013

Citation: M. Deaconescu, G. L. Walls, “Groups acting on groups”, Algebra Logika, 52:5 (2013), 582–588; Algebra and Logic, 52:5 (2013), 387–391

Citation in format AMSBIB
\Bibitem{DeaWal13}
\by M.~Deaconescu, G.~L.~Walls
\paper Groups acting on groups
\jour Algebra Logika
\yr 2013
\vol 52
\issue 5
\pages 582--588
\mathnet{http://mi.mathnet.ru/al604}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3184661}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 5
\pages 387--391
\crossref{https://doi.org/10.1007/s10469-013-9250-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000328340100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889020506}


Linking options:
  • http://mi.mathnet.ru/eng/al604
  • http://mi.mathnet.ru/eng/al/v52/i5/p582

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. Deaconescu, G. Walls, “Remarks on finite group actions”, Bull. Math. Soc. Sci. Math. Roum., 59:3 (2016), 225–231  mathscinet  zmath  isi
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:173
    Full text:53
    References:38
    First page:21

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021