|
This article is cited in 1 scientific paper (total in 1 paper)
Relatively Hyperimmune Relations on Structures
S. S. Goncharova, Ch. F. McCoyb, J. F. Knightc, V. S. Harizanovad a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b University of Wisconsin-Madison
c University of Notre Dame
d George Washington University
Abstract:
Let $\mathcal{A}$ be a computable structure and let $R$ be an additional relation on its domain. We establish a necessary and sufficient condition for the existence of an isomorphic copy $\mathcal{B}$ of $\mathcal{A}$ such that the image of $R$ ($\lnot R$) is $h$-simple ($h$-immune) relative to $\mathcal{B}$.
Keywords:
computable structure, relatively hyperimmune relation, relatively hypersimple relation
Full text:
PDF file (198 kB)
References:
PDF file
HTML file
English version:
Algebra and Logic, 2004, 43:2, 94–101
Bibliographic databases:
UDC:
510.53 Received: 23.04.2002
Citation:
S. S. Goncharov, Ch. F. McCoy, J. F. Knight, V. S. Harizanova, “Relatively Hyperimmune Relations on Structures”, Algebra Logika, 43:2 (2004), 170–183; Algebra and Logic, 43:2 (2004), 94–101
Citation in format AMSBIB
\Bibitem{GonMccKni04}
\by S.~S.~Goncharov, Ch.~F.~McCoy, J.~F.~Knight, V.~S.~Harizanova
\paper Relatively Hyperimmune Relations on Structures
\jour Algebra Logika
\yr 2004
\vol 43
\issue 2
\pages 170--183
\mathnet{http://mi.mathnet.ru/al62}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2072569}
\zmath{https://zbmath.org/?q=an:1115.03048}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 2
\pages 94--101
\crossref{https://doi.org/10.1023/B:ALLO.0000020846.55332.2f}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42349105528}
Linking options:
http://mi.mathnet.ru/eng/al62 http://mi.mathnet.ru/eng/al/v43/i2/p170
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Fokina E.B. Harizanov V. Melnikov A., “Computable Model Theory”, Turing'S Legacy: Developments From Turing'S Ideas in Logic, Lecture Notes in Logic, 42, ed. Downey R., Cambridge Univ Press, 2014, 124–194
|
Number of views: |
This page: | 157 | Full text: | 53 | References: | 34 | First page: | 1 |
|