RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2014, Volume 53, Number 2, Pages 185–205 (Mi al630)  

Strong constructivizability of Boolean algebras of elementary characteristic $(\infty,0,0)$

M. N. Leontievaab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract: We give a complete description of conditions of being strongly constructivizable for Boolean algebras of elementary characteristic $(\infty,0,0)$ in terms of being computable for a sequence of canonical Ershov–Tarski predicates on Boolean algebras.

Keywords: Boolean algebra, computable model, ideals of Boolean algebra.

Full text: PDF file (245 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2014, 53:2, 119–132

Bibliographic databases:

UDC: 510.5+510.6+512.563
Received: 29.11.2013

Citation: M. N. Leontieva, “Strong constructivizability of Boolean algebras of elementary characteristic $(\infty,0,0)$”, Algebra Logika, 53:2 (2014), 185–205; Algebra and Logic, 53:2 (2014), 119–132

Citation in format AMSBIB
\Bibitem{Leo14}
\by M.~N.~Leontieva
\paper Strong constructivizability of Boolean algebras of elementary characteristic $(\infty,0,0)$
\jour Algebra Logika
\yr 2014
\vol 53
\issue 2
\pages 185--205
\mathnet{http://mi.mathnet.ru/al630}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3237389}
\transl
\jour Algebra and Logic
\yr 2014
\vol 53
\issue 2
\pages 119--132
\crossref{https://doi.org/10.1007/s10469-014-9276-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000339821300004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84905061737}


Linking options:
  • http://mi.mathnet.ru/eng/al630
  • http://mi.mathnet.ru/eng/al/v53/i2/p185

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:125
    Full text:23
    References:37
    First page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019