RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2014, Volume 53, Number 4, Pages 505–540 (Mi al647)  

This article is cited in 6 scientific papers (total in 6 papers)

Ternary derivations of Jordan superalgebras

A. I. Shestakovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract: We give a description of ternary and generalized derivations of finitedimensional semisimple Jordan superalgebras over an algebraically closed field of characteristic 0, and also of simple Jordan superalgebras with semisimple even part over an algebraically closed field in arbitrary characteristic other than 2.

Keywords: superalgebra, Jordan algebra, generalized derivation, ternary derivation.

Full text: PDF file (316 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2014, 53:4, 323–348

Bibliographic databases:

Document Type: Article
UDC: 512.554
Received: 17.09.2013
Revised: 29.04.2014

Citation: A. I. Shestakov, “Ternary derivations of Jordan superalgebras”, Algebra Logika, 53:4 (2014), 505–540; Algebra and Logic, 53:4 (2014), 323–348

Citation in format AMSBIB
\Bibitem{She14}
\by A.~I.~Shestakov
\paper Ternary derivations of Jordan superalgebras
\jour Algebra Logika
\yr 2014
\vol 53
\issue 4
\pages 505--540
\mathnet{http://mi.mathnet.ru/al647}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3328829}
\transl
\jour Algebra and Logic
\yr 2014
\vol 53
\issue 4
\pages 323--348
\crossref{https://doi.org/10.1007/s10469-014-9293-6}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000345319700004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922074836}


Linking options:
  • http://mi.mathnet.ru/eng/al647
  • http://mi.mathnet.ru/eng/al/v53/i4/p505

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Kaygorodov, A. Lopatin, Yu. Popov, “Conservative algebras of $2$-dimensional algebras”, Linear Alg. Appl., 486 (2015), 255–274  crossref  mathscinet  zmath  isi  elib  scopus
    2. I. Kaygorodov, Yu. Popov, “Generalized derivations of (color) $n$-ary algebras”, Linear Multilinear Algebra, 64:6 (2016), 1086–1106  crossref  mathscinet  zmath  isi  elib  scopus
    3. I. Kaygorodov, Yu. Volkov, “Conservative algebras of $2$-dimensional algebras, II”, Commun. Algebr., 45:8 (2017), 3413–3421  crossref  mathscinet  zmath  isi  scopus
    4. V. N. Zhelyabin, A. I. Shestakov, “Alternative and Jordan algebras admitting ternary derivations with invertible values”, Sib. elektron. matem. izv., 14 (2017), 1505–1523  mathnet  crossref
    5. A. Doosti, F. Saeedi, S. Tajnia, “Some properties of $m$-isoclinism and $\mathrm{ID}^*$-derivations in Filippov algebras”, Cogent Math., 4 (2017), 1309740  crossref  mathscinet  isi
    6. I. Kaygorodov, A. Lopatin, Yu. Popov, “The structure of simple noncommutative Jordan superalgebras”, Mediterr. J. Math., 15:2 (2018), UNSP 33  crossref  mathscinet  isi
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:169
    Full text:15
    References:23
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019