RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2014, Volume 53, Number 6, Pages 704–709 (Mi al661)  

This article is cited in 1 scientific paper (total in 1 paper)

Separant of an arbitrary polynomial

Yu. L. Ershovab

a Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
b Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia

Abstract: Let $f$ be a unitary polynomial over $F$. Previously, the concept of a separant of a polynomial $f$ was defined for the case where f has no multiple roots. The notion of a separant turned out to be very useful for generalizations of Hensel's lemma. We propose a generalization of this concept to the case where a polynomial may have multiple roots. This allows us to extend Hensel's lemma to this case as well.

Keywords: separant of polynomial, Hensel's lemma.

Full text: PDF file (125 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2015, 53:6, 458–462

Bibliographic databases:

UDC: 512.623.4
Received: 01.10.2014

Citation: Yu. L. Ershov, “Separant of an arbitrary polynomial”, Algebra Logika, 53:6 (2014), 704–709; Algebra and Logic, 53:6 (2015), 458–462

Citation in format AMSBIB
\Bibitem{Ers14}
\by Yu.~L.~Ershov
\paper Separant of an arbitrary polynomial
\jour Algebra Logika
\yr 2014
\vol 53
\issue 6
\pages 704--709
\mathnet{http://mi.mathnet.ru/al661}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3408304}
\transl
\jour Algebra and Logic
\yr 2015
\vol 53
\issue 6
\pages 458--462
\crossref{https://doi.org/10.1007/s10469-015-9307-z}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350800200003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924143811}


Linking options:
  • http://mi.mathnet.ru/eng/al661
  • http://mi.mathnet.ru/eng/al/v53/i6/p704

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. L. Ershov, “How to find (compute) a separant”, Algebra and Logic, 54:2 (2015), 155–160  mathnet  crossref  crossref  mathscinet  isi
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:183
    Full text:54
    References:24
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020