RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2014, Volume 53, Number 6, Pages 735–763 (Mi al664)  

This article is cited in 3 scientific papers (total in 3 papers)

Twisted conjugacy classes in Chevalley groups

T. R. Nasybullov

Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract: Let $G$ be a group and $\varphi\colon G\to G$ its automorphism. We say that elements $x$ and $y$ of $G$ are twisted $\varphi$-conjugate, or merely $\varphi$-conjugate (written $x\sim_\varphi y$), if there exists an element $z$ of $G$ for which $x=zy\varphi(z^{-1})$. If, in addition, $\varphi$ is an identical automorphism, then we speak of conjugacy. The $\varphi$-conjugacy class of an element $x$ is denoted by $[x]_\varphi$. The number $R(\varphi)$ of these classes is called the Reidemeister number of an automorphism $\varphi$. A group is said to possess the $R_\infty$ property if the number $R(\varphi)$ is infinite for every automorphism $\varphi$.
We consider Chevalley groups over fields. In particular, it is proved that if an algebraically closed field $F$ of characteristic zero has finite transcendence degree over $\mathbb Q$, then a Chevalley group over $F$ possesses the $R_\infty$ property. Furthermore, a Chevalley group over a field $F$ of characteristic zero has the $R_\infty$ property if $F$ has a periodic automorphism group. The condition that $F$ is of characteristic zero cannot be discarded. This follows from Steinberg's result which says that for connected linear algebraic groups over an algebraically closed field of characteristic zero, there always exists an automorphism $\varphi$ for which $R(\varphi)=1$.

Keywords: twisted conjugacy classes, Chevalley group.

Full text: PDF file (411 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2015, 53:6, 481–501

Bibliographic databases:

UDC: 512.54
Received: 30.10.2013
Revised: 24.07.2014

Citation: T. R. Nasybullov, “Twisted conjugacy classes in Chevalley groups”, Algebra Logika, 53:6 (2014), 735–763; Algebra and Logic, 53:6 (2015), 481–501

Citation in format AMSBIB
\Bibitem{Nas14}
\by T.~R.~Nasybullov
\paper Twisted conjugacy classes in Chevalley groups
\jour Algebra Logika
\yr 2014
\vol 53
\issue 6
\pages 735--763
\mathnet{http://mi.mathnet.ru/al664}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3408307}
\transl
\jour Algebra and Logic
\yr 2015
\vol 53
\issue 6
\pages 481--501
\crossref{https://doi.org/10.1007/s10469-015-9310-4}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000350800200006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924166817}


Linking options:
  • http://mi.mathnet.ru/eng/al664
  • http://mi.mathnet.ru/eng/al/v53/i6/p735

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Fel'shtyn, E. Troitsky, “Aspects of the property $R_{\infty}$”, J. Group Theory, 18:6 (2015), 1021–1034  crossref  zmath  isi  scopus
    2. T. R. Nasybullov, “The $R_{\infty}$-property for chevalley groups of types $B_l$, $C_l$, $D_l$ over integral domains”, J. Algebra, 446 (2016), 489–498  crossref  zmath  isi  elib  scopus
    3. A. Fel'shtyn, T. Nasybullov, “The $R_{\infty}$ and $S_{\infty}$ properties for linear algebraic groups”, J. Group Theory, 19:5 (2016), 901–921  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:170
    Full text:32
    References:23
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019