Algebra i logika
 RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Archive Impact factor Subscription Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Algebra Logika: Year: Volume: Issue: Page: Find

 Algebra Logika, 2015, Volume 54, Number 2, Pages 193–211 (Mi al687)

$\mathbb Q$-completions of free solvable groups

Ch. K. Guptaa, N. S. Romanovskiibc

a Dep. Math., Univ. Manitoba, Winnipeg, R3T 2N2, Canada
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
c Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia

Abstract: A group $G$ is said to be complete if, for any natural $n$ and any element $g\in G$, an equation $x^n=g$ is solvable in $G$. If every such equation in the group has at most one solution, then we say that the condition for uniqueness of root extraction is satisfied. A complete group with unique root extraction can be treated as a $\mathbb Q$-power group since it admits an operation of raising an element to any rational power. Let a group $G$ be embedded in a complete group $H$ with unique root extraction, and let $H$ be generated as a $\mathbb Q$-group by the set $G$. Then $H$ is called a $\mathbb Q$-completion of $G$.
We prove that every $m$-rigid group $G$ is independently embedded in a complete $m$-rigid group. Under the specified condition for independence of an embedding, the $\mathbb Q$-completion of the group $G$ in the class of rigid groups is defined uniquely up to $G$-isomorphism. It is stated that the centralizer of any element of an independent $\mathbb Q$-completion of a free solvable group which does not belong to the last nontrivial member of a rigid series of this completion is isomorphic to the additive group of a field $\mathbb Q$ of rational numbers.

Keywords: $m$-rigid group, free solvable group, $\mathbb Q$-completion.

DOI: https://doi.org/10.17377/alglog.2015.54.204

Full text: PDF file (202 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2015, 54:2, 127–139

Bibliographic databases:

UDC: 512.5

Citation: Ch. K. Gupta, N. S. Romanovskii, “$\mathbb Q$-completions of free solvable groups”, Algebra Logika, 54:2 (2015), 193–211; Algebra and Logic, 54:2 (2015), 127–139

Citation in format AMSBIB
\Bibitem{GupRom15} \by Ch.~K.~Gupta, N.~S.~Romanovskii \paper $\mathbb Q$-completions of free solvable groups \jour Algebra Logika \yr 2015 \vol 54 \issue 2 \pages 193--211 \mathnet{http://mi.mathnet.ru/al687} \crossref{https://doi.org/10.17377/alglog.2015.54.204} \mathscinet{http://www.ams.org/mathscinet-getitem?mr=3467210} \transl \jour Algebra and Logic \yr 2015 \vol 54 \issue 2 \pages 127--139 \crossref{https://doi.org/10.1007/s10469-015-9332-y} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000359424500004} \scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938960189}