RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2015, Volume 54, Number 4, Pages 493–502 (Mi al706)  

This article is cited in 2 scientific papers (total in 2 papers)

Algebras with identical algebraic sets

A. G. Pinus

Novosibirsk State Technical University, pr. Marksa 20, Novosibirsk, 630092, Russia

Abstract: We look into the relationship between the so-called additive universal algebras $\mathfrak A_0=\langle A;\sigma_0\rangle$ and $\mathfrak A_1=\langle A;\sigma_1\rangle$ with common universe $A$ having the same algebraic sets ($\operatorname{Alg}_n\mathfrak A_0=\operatorname{Alg}_n\mathfrak A_1$ for any $n\in\omega$) and subalgebras ($\operatorname{Sub}\mathfrak A_0=\operatorname{Sub}\mathfrak A_1$).

Keywords: algebraic geometry of universal algebras, algebraic set, additive universal algebra.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 2014/138, проект 1052
2014/138, проект 1052
Supported by the Russian Ministry of Education and Science (gov. contract 2014/138, project No. 1052).


DOI: https://doi.org/10.17377/alglog.2015.54.405

Full text: PDF file (139 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2015, 54:4, 316–322

Bibliographic databases:

UDC: 512.57
Received: 10.08.2014

Citation: A. G. Pinus, “Algebras with identical algebraic sets”, Algebra Logika, 54:4 (2015), 493–502; Algebra and Logic, 54:4 (2015), 316–322

Citation in format AMSBIB
\Bibitem{Pin15}
\by A.~G.~Pinus
\paper Algebras with identical algebraic sets
\jour Algebra Logika
\yr 2015
\vol 54
\issue 4
\pages 493--502
\mathnet{http://mi.mathnet.ru/al706}
\crossref{https://doi.org/10.17377/alglog.2015.54.405}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3468412}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 4
\pages 316--322
\crossref{https://doi.org/10.1007/s10469-015-9351-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000365784700005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958061613}


Linking options:
  • http://mi.mathnet.ru/eng/al706
  • http://mi.mathnet.ru/eng/al/v54/i4/p493

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Pinus, “Algebraically equivalent clones”, Algebra and Logic, 55:6 (2017), 501–506  mathnet  crossref  crossref  isi
    2. A. G. Pinus, “Algebraic sets of universal algebras and algebraic closure operator”, Lobachevskii J. Math., 38:4, SI (2017), 719–723  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:100
    Full text:13
    References:23
    First page:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019