RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2015, Volume 54, Number 5, Pages 575–588 (Mi al713)  

This article is cited in 2 scientific papers (total in 2 papers)

Dominions in solvable groups

A. I. Budkin

Altai State University, pr. Lenina 61, Barnaul, 656049, Russia

Abstract: The dominion of a subgroup $H$ of a group $G$ in a class $M$ is the set of all elements $a\in G$ whose images are equal for all pairs of homomorphisms from $G$ to each group in $M$ that coincide on $H$. A group $H$ is absolutely closed in a class $M$ if, for any group $G$ in $M$ and any inclusion $H\le G$, the dominion of $H$ in $G$ (with respect to $M$) coincides with $H$ (i.e., $H$ is closed in $G$).
We prove that every torsion-free nontrivial Abelian group is not absolutely closed in $\mathcal{AN}_c$. It is shown that if a subgroup $H$ of $G$ in $\mathcal N_c\mathcal A$ has trivial intersection with the commutator subgroup $G'$, then the dominion of $H$ in $G$ (with respect to $\mathcal N_c\mathcal A$) coincides with $H$. It is stated that the study of closed subgroups reduces to treating dominions of finitely generated subgroups of finitely generated groups.

Keywords: quasivariety, nilpotent group, extension of Abelian group by nilpotent group, dominion, closed subgroup.

DOI: https://doi.org/10.17377/alglog.2015.54.502

Full text: PDF file (169 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2015, 54:5, 370–379

Bibliographic databases:

UDC: 512.57
Received: 17.11.2014
Revised: 29.03.2015

Citation: A. I. Budkin, “Dominions in solvable groups”, Algebra Logika, 54:5 (2015), 575–588; Algebra and Logic, 54:5 (2015), 370–379

Citation in format AMSBIB
\Bibitem{Bud15}
\by A.~I.~Budkin
\paper Dominions in solvable groups
\jour Algebra Logika
\yr 2015
\vol 54
\issue 5
\pages 575--588
\mathnet{http://mi.mathnet.ru/al713}
\crossref{https://doi.org/10.17377/alglog.2015.54.502}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3468418}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 5
\pages 370--379
\crossref{https://doi.org/10.1007/s10469-015-9358-1}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000366155000002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957933223}


Linking options:
  • http://mi.mathnet.ru/eng/al713
  • http://mi.mathnet.ru/eng/al/v54/i5/p575

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Budkin, “On $2$-closedness of the rational numbers in quasivarieties of nilpotent groups”, Siberian Math. J., 58:6 (2017), 971–982  mathnet  crossref  crossref  isi  elib
    2. A. I. Budkin, “On dominions of the rationals in nilpotent groups”, Siberian Math. J., 59:4 (2018), 598–609  mathnet  crossref  crossref  isi  elib
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:107
    Full text:13
    References:58
    First page:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020